2249 lines
78 KiB
Plaintext
2249 lines
78 KiB
Plaintext
Unit imtrees;
|
|
|
|
{$T-}
|
|
{$define ORG_DEBUG}
|
|
{
|
|
trees.c -- output deflated data using Huffman coding
|
|
Copyright (C) 1995-1998 Jean-loup Gailly
|
|
|
|
Pascal tranlastion
|
|
Copyright (C) 1998 by Jacques Nomssi Nzali
|
|
For conditions of distribution and use, see copyright notice in readme.txt
|
|
}
|
|
|
|
{
|
|
* ALGORITHM
|
|
*
|
|
* The "deflation" process uses several Huffman trees. The more
|
|
* common source values are represented by shorter bit sequences.
|
|
*
|
|
* Each code tree is stored in a compressed form which is itself
|
|
* a Huffman encoding of the lengths of all the code strings (in
|
|
* ascending order by source values). The actual code strings are
|
|
* reconstructed from the lengths in the inflate process, as described
|
|
* in the deflate specification.
|
|
*
|
|
* REFERENCES
|
|
*
|
|
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
|
|
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
|
|
*
|
|
* Storer, James A.
|
|
* Data Compression: Methods and Theory, pp. 49-50.
|
|
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
|
*
|
|
* Sedgewick, R.
|
|
* Algorithms, p290.
|
|
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
|
}
|
|
|
|
interface
|
|
|
|
{$I imzconf.inc}
|
|
|
|
uses
|
|
{$ifdef DEBUG}
|
|
SysUtils, strutils,
|
|
{$ENDIF}
|
|
imzutil, impaszlib;
|
|
|
|
{ ===========================================================================
|
|
Internal compression state. }
|
|
|
|
const
|
|
LENGTH_CODES = 29;
|
|
{ number of length codes, not counting the special END_BLOCK code }
|
|
|
|
LITERALS = 256;
|
|
{ number of literal bytes 0..255 }
|
|
|
|
L_CODES = (LITERALS+1+LENGTH_CODES);
|
|
{ number of Literal or Length codes, including the END_BLOCK code }
|
|
|
|
D_CODES = 30;
|
|
{ number of distance codes }
|
|
|
|
BL_CODES = 19;
|
|
{ number of codes used to transfer the bit lengths }
|
|
|
|
HEAP_SIZE = (2*L_CODES+1);
|
|
{ maximum heap size }
|
|
|
|
MAX_BITS = 15;
|
|
{ All codes must not exceed MAX_BITS bits }
|
|
|
|
const
|
|
INIT_STATE = 42;
|
|
BUSY_STATE = 113;
|
|
FINISH_STATE = 666;
|
|
{ Stream status }
|
|
|
|
|
|
{ Data structure describing a single value and its code string. }
|
|
type
|
|
ct_data_ptr = ^ct_data;
|
|
ct_data = record
|
|
fc : record
|
|
case byte of
|
|
0:(freq : ush); { frequency count }
|
|
1:(code : ush); { bit string }
|
|
end;
|
|
dl : record
|
|
case byte of
|
|
0:(dad : ush); { father node in Huffman tree }
|
|
1:(len : ush); { length of bit string }
|
|
end;
|
|
end;
|
|
|
|
{ Freq = fc.freq
|
|
Code = fc.code
|
|
Dad = dl.dad
|
|
Len = dl.len }
|
|
|
|
type
|
|
ltree_type = array[0..HEAP_SIZE-1] of ct_data; { literal and length tree }
|
|
dtree_type = array[0..2*D_CODES+1-1] of ct_data; { distance tree }
|
|
htree_type = array[0..2*BL_CODES+1-1] of ct_data; { Huffman tree for bit lengths }
|
|
{ generic tree type }
|
|
tree_type = array[0..(MaxInt div SizeOf(ct_data))-1] of ct_data;
|
|
|
|
tree_ptr = ^tree_type;
|
|
ltree_ptr = ^ltree_type;
|
|
dtree_ptr = ^dtree_type;
|
|
htree_ptr = ^htree_type;
|
|
|
|
|
|
type
|
|
static_tree_desc_ptr = ^static_tree_desc;
|
|
static_tree_desc =
|
|
record
|
|
{const} static_tree : tree_ptr; { static tree or NIL }
|
|
{const} extra_bits : pzIntfArray; { extra bits for each code or NIL }
|
|
extra_base : int; { base index for extra_bits }
|
|
elems : int; { max number of elements in the tree }
|
|
max_length : int; { max bit length for the codes }
|
|
end;
|
|
|
|
tree_desc_ptr = ^tree_desc;
|
|
tree_desc = record
|
|
dyn_tree : tree_ptr; { the dynamic tree }
|
|
max_code : int; { largest code with non zero frequency }
|
|
stat_desc : static_tree_desc_ptr; { the corresponding static tree }
|
|
end;
|
|
|
|
type
|
|
Pos = ush;
|
|
Posf = Pos; {FAR}
|
|
IPos = uInt;
|
|
|
|
pPosf = ^Posf;
|
|
|
|
zPosfArray = array[0..(MaxInt div SizeOf(Posf))-1] of Posf;
|
|
pzPosfArray = ^zPosfArray;
|
|
|
|
{ A Pos is an index in the character window. We use short instead of int to
|
|
save space in the various tables. IPos is used only for parameter passing.}
|
|
|
|
type
|
|
deflate_state_ptr = ^deflate_state;
|
|
deflate_state = record
|
|
strm : z_streamp; { pointer back to this zlib stream }
|
|
status : int; { as the name implies }
|
|
pending_buf : pzByteArray; { output still pending }
|
|
pending_buf_size : ulg; { size of pending_buf }
|
|
pending_out : pBytef; { next pending byte to output to the stream }
|
|
pending : int; { nb of bytes in the pending buffer }
|
|
noheader : int; { suppress zlib header and adler32 }
|
|
data_type : Byte; { UNKNOWN, BINARY or ASCII }
|
|
method : Byte; { STORED (for zip only) or DEFLATED }
|
|
last_flush : int; { value of flush param for previous deflate call }
|
|
|
|
{ used by deflate.pas: }
|
|
|
|
w_size : uInt; { LZ77 window size (32K by default) }
|
|
w_bits : uInt; { log2(w_size) (8..16) }
|
|
w_mask : uInt; { w_size - 1 }
|
|
|
|
window : pzByteArray;
|
|
{ Sliding window. Input bytes are read into the second half of the window,
|
|
and move to the first half later to keep a dictionary of at least wSize
|
|
bytes. With this organization, matches are limited to a distance of
|
|
wSize-MAX_MATCH bytes, but this ensures that IO is always
|
|
performed with a length multiple of the block size. Also, it limits
|
|
the window size to 64K, which is quite useful on MSDOS.
|
|
To do: use the user input buffer as sliding window. }
|
|
|
|
window_size : ulg;
|
|
{ Actual size of window: 2*wSize, except when the user input buffer
|
|
is directly used as sliding window. }
|
|
|
|
prev : pzPosfArray;
|
|
{ Link to older string with same hash index. To limit the size of this
|
|
array to 64K, this link is maintained only for the last 32K strings.
|
|
An index in this array is thus a window index modulo 32K. }
|
|
|
|
head : pzPosfArray; { Heads of the hash chains or NIL. }
|
|
|
|
ins_h : uInt; { hash index of string to be inserted }
|
|
hash_size : uInt; { number of elements in hash table }
|
|
hash_bits : uInt; { log2(hash_size) }
|
|
hash_mask : uInt; { hash_size-1 }
|
|
|
|
hash_shift : uInt;
|
|
{ Number of bits by which ins_h must be shifted at each input
|
|
step. It must be such that after MIN_MATCH steps, the oldest
|
|
byte no longer takes part in the hash key, that is:
|
|
hash_shift * MIN_MATCH >= hash_bits }
|
|
|
|
block_start : long;
|
|
{ Window position at the beginning of the current output block. Gets
|
|
negative when the window is moved backwards. }
|
|
|
|
match_length : uInt; { length of best match }
|
|
prev_match : IPos; { previous match }
|
|
match_available : boolean; { set if previous match exists }
|
|
strstart : uInt; { start of string to insert }
|
|
match_start : uInt; { start of matching string }
|
|
lookahead : uInt; { number of valid bytes ahead in window }
|
|
|
|
prev_length : uInt;
|
|
{ Length of the best match at previous step. Matches not greater than this
|
|
are discarded. This is used in the lazy match evaluation. }
|
|
|
|
max_chain_length : uInt;
|
|
{ To speed up deflation, hash chains are never searched beyond this
|
|
length. A higher limit improves compression ratio but degrades the
|
|
speed. }
|
|
|
|
{ moved to the end because Borland Pascal won't accept the following:
|
|
max_lazy_match : uInt;
|
|
max_insert_length : uInt absolute max_lazy_match;
|
|
}
|
|
|
|
level : int; { compression level (1..9) }
|
|
strategy : int; { favor or force Huffman coding}
|
|
|
|
good_match : uInt;
|
|
{ Use a faster search when the previous match is longer than this }
|
|
|
|
nice_match : int; { Stop searching when current match exceeds this }
|
|
|
|
{ used by trees.pas: }
|
|
{ Didn't use ct_data typedef below to supress compiler warning }
|
|
dyn_ltree : ltree_type; { literal and length tree }
|
|
dyn_dtree : dtree_type; { distance tree }
|
|
bl_tree : htree_type; { Huffman tree for bit lengths }
|
|
|
|
l_desc : tree_desc; { desc. for literal tree }
|
|
d_desc : tree_desc; { desc. for distance tree }
|
|
bl_desc : tree_desc; { desc. for bit length tree }
|
|
|
|
bl_count : array[0..MAX_BITS+1-1] of ush;
|
|
{ number of codes at each bit length for an optimal tree }
|
|
|
|
heap : array[0..2*L_CODES+1-1] of int; { heap used to build the Huffman trees }
|
|
heap_len : int; { number of elements in the heap }
|
|
heap_max : int; { element of largest frequency }
|
|
{ The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
|
The same heap array is used to build all trees. }
|
|
|
|
depth : array[0..2*L_CODES+1-1] of uch;
|
|
{ Depth of each subtree used as tie breaker for trees of equal frequency }
|
|
|
|
|
|
l_buf : puchfArray; { buffer for literals or lengths }
|
|
|
|
lit_bufsize : uInt;
|
|
{ Size of match buffer for literals/lengths. There are 4 reasons for
|
|
limiting lit_bufsize to 64K:
|
|
- frequencies can be kept in 16 bit counters
|
|
- if compression is not successful for the first block, all input
|
|
data is still in the window so we can still emit a stored block even
|
|
when input comes from standard input. (This can also be done for
|
|
all blocks if lit_bufsize is not greater than 32K.)
|
|
- if compression is not successful for a file smaller than 64K, we can
|
|
even emit a stored file instead of a stored block (saving 5 bytes).
|
|
This is applicable only for zip (not gzip or zlib).
|
|
- creating new Huffman trees less frequently may not provide fast
|
|
adaptation to changes in the input data statistics. (Take for
|
|
example a binary file with poorly compressible code followed by
|
|
a highly compressible string table.) Smaller buffer sizes give
|
|
fast adaptation but have of course the overhead of transmitting
|
|
trees more frequently.
|
|
- I can't count above 4 }
|
|
|
|
|
|
last_lit : uInt; { running index in l_buf }
|
|
|
|
d_buf : pushfArray;
|
|
{ Buffer for distances. To simplify the code, d_buf and l_buf have
|
|
the same number of elements. To use different lengths, an extra flag
|
|
array would be necessary. }
|
|
|
|
opt_len : ulg; { bit length of current block with optimal trees }
|
|
static_len : ulg; { bit length of current block with static trees }
|
|
compressed_len : ulg; { total bit length of compressed file }
|
|
matches : uInt; { number of string matches in current block }
|
|
last_eob_len : int; { bit length of EOB code for last block }
|
|
|
|
{$ifdef DEBUG}
|
|
bits_sent : ulg; { bit length of the compressed data }
|
|
{$endif}
|
|
|
|
bi_buf : ush;
|
|
{ Output buffer. bits are inserted starting at the bottom (least
|
|
significant bits). }
|
|
|
|
bi_valid : int;
|
|
{ Number of valid bits in bi_buf. All bits above the last valid bit
|
|
are always zero. }
|
|
|
|
case byte of
|
|
0:(max_lazy_match : uInt);
|
|
{ Attempt to find a better match only when the current match is strictly
|
|
smaller than this value. This mechanism is used only for compression
|
|
levels >= 4. }
|
|
|
|
1:(max_insert_length : uInt);
|
|
{ Insert new strings in the hash table only if the match length is not
|
|
greater than this length. This saves time but degrades compression.
|
|
max_insert_length is used only for compression levels <= 3. }
|
|
end;
|
|
|
|
procedure _tr_init (var s : deflate_state);
|
|
|
|
function _tr_tally (var s : deflate_state;
|
|
dist : unsigned;
|
|
lc : unsigned) : boolean;
|
|
|
|
function _tr_flush_block (var s : deflate_state;
|
|
buf : pcharf;
|
|
stored_len : ulg;
|
|
eof : boolean) : ulg;
|
|
|
|
procedure _tr_align(var s : deflate_state);
|
|
|
|
procedure _tr_stored_block(var s : deflate_state;
|
|
buf : pcharf;
|
|
stored_len : ulg;
|
|
eof : boolean);
|
|
|
|
implementation
|
|
|
|
{ #define GEN_TREES_H }
|
|
|
|
{$ifndef GEN_TREES_H}
|
|
{ header created automatically with -DGEN_TREES_H }
|
|
|
|
const
|
|
DIST_CODE_LEN = 512; { see definition of array dist_code below }
|
|
|
|
{ The static literal tree. Since the bit lengths are imposed, there is no
|
|
need for the L_CODES extra codes used during heap construction. However
|
|
The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
|
below). }
|
|
var
|
|
static_ltree : array[0..L_CODES+2-1] of ct_data = (
|
|
{ fc:(freq, code) dl:(dad,len) }
|
|
(fc:(freq: 12);dl:(len: 8)), (fc:(freq:140);dl:(len: 8)), (fc:(freq: 76);dl:(len: 8)),
|
|
(fc:(freq:204);dl:(len: 8)), (fc:(freq: 44);dl:(len: 8)), (fc:(freq:172);dl:(len: 8)),
|
|
(fc:(freq:108);dl:(len: 8)), (fc:(freq:236);dl:(len: 8)), (fc:(freq: 28);dl:(len: 8)),
|
|
(fc:(freq:156);dl:(len: 8)), (fc:(freq: 92);dl:(len: 8)), (fc:(freq:220);dl:(len: 8)),
|
|
(fc:(freq: 60);dl:(len: 8)), (fc:(freq:188);dl:(len: 8)), (fc:(freq:124);dl:(len: 8)),
|
|
(fc:(freq:252);dl:(len: 8)), (fc:(freq: 2);dl:(len: 8)), (fc:(freq:130);dl:(len: 8)),
|
|
(fc:(freq: 66);dl:(len: 8)), (fc:(freq:194);dl:(len: 8)), (fc:(freq: 34);dl:(len: 8)),
|
|
(fc:(freq:162);dl:(len: 8)), (fc:(freq: 98);dl:(len: 8)), (fc:(freq:226);dl:(len: 8)),
|
|
(fc:(freq: 18);dl:(len: 8)), (fc:(freq:146);dl:(len: 8)), (fc:(freq: 82);dl:(len: 8)),
|
|
(fc:(freq:210);dl:(len: 8)), (fc:(freq: 50);dl:(len: 8)), (fc:(freq:178);dl:(len: 8)),
|
|
(fc:(freq:114);dl:(len: 8)), (fc:(freq:242);dl:(len: 8)), (fc:(freq: 10);dl:(len: 8)),
|
|
(fc:(freq:138);dl:(len: 8)), (fc:(freq: 74);dl:(len: 8)), (fc:(freq:202);dl:(len: 8)),
|
|
(fc:(freq: 42);dl:(len: 8)), (fc:(freq:170);dl:(len: 8)), (fc:(freq:106);dl:(len: 8)),
|
|
(fc:(freq:234);dl:(len: 8)), (fc:(freq: 26);dl:(len: 8)), (fc:(freq:154);dl:(len: 8)),
|
|
(fc:(freq: 90);dl:(len: 8)), (fc:(freq:218);dl:(len: 8)), (fc:(freq: 58);dl:(len: 8)),
|
|
(fc:(freq:186);dl:(len: 8)), (fc:(freq:122);dl:(len: 8)), (fc:(freq:250);dl:(len: 8)),
|
|
(fc:(freq: 6);dl:(len: 8)), (fc:(freq:134);dl:(len: 8)), (fc:(freq: 70);dl:(len: 8)),
|
|
(fc:(freq:198);dl:(len: 8)), (fc:(freq: 38);dl:(len: 8)), (fc:(freq:166);dl:(len: 8)),
|
|
(fc:(freq:102);dl:(len: 8)), (fc:(freq:230);dl:(len: 8)), (fc:(freq: 22);dl:(len: 8)),
|
|
(fc:(freq:150);dl:(len: 8)), (fc:(freq: 86);dl:(len: 8)), (fc:(freq:214);dl:(len: 8)),
|
|
(fc:(freq: 54);dl:(len: 8)), (fc:(freq:182);dl:(len: 8)), (fc:(freq:118);dl:(len: 8)),
|
|
(fc:(freq:246);dl:(len: 8)), (fc:(freq: 14);dl:(len: 8)), (fc:(freq:142);dl:(len: 8)),
|
|
(fc:(freq: 78);dl:(len: 8)), (fc:(freq:206);dl:(len: 8)), (fc:(freq: 46);dl:(len: 8)),
|
|
(fc:(freq:174);dl:(len: 8)), (fc:(freq:110);dl:(len: 8)), (fc:(freq:238);dl:(len: 8)),
|
|
(fc:(freq: 30);dl:(len: 8)), (fc:(freq:158);dl:(len: 8)), (fc:(freq: 94);dl:(len: 8)),
|
|
(fc:(freq:222);dl:(len: 8)), (fc:(freq: 62);dl:(len: 8)), (fc:(freq:190);dl:(len: 8)),
|
|
(fc:(freq:126);dl:(len: 8)), (fc:(freq:254);dl:(len: 8)), (fc:(freq: 1);dl:(len: 8)),
|
|
(fc:(freq:129);dl:(len: 8)), (fc:(freq: 65);dl:(len: 8)), (fc:(freq:193);dl:(len: 8)),
|
|
(fc:(freq: 33);dl:(len: 8)), (fc:(freq:161);dl:(len: 8)), (fc:(freq: 97);dl:(len: 8)),
|
|
(fc:(freq:225);dl:(len: 8)), (fc:(freq: 17);dl:(len: 8)), (fc:(freq:145);dl:(len: 8)),
|
|
(fc:(freq: 81);dl:(len: 8)), (fc:(freq:209);dl:(len: 8)), (fc:(freq: 49);dl:(len: 8)),
|
|
(fc:(freq:177);dl:(len: 8)), (fc:(freq:113);dl:(len: 8)), (fc:(freq:241);dl:(len: 8)),
|
|
(fc:(freq: 9);dl:(len: 8)), (fc:(freq:137);dl:(len: 8)), (fc:(freq: 73);dl:(len: 8)),
|
|
(fc:(freq:201);dl:(len: 8)), (fc:(freq: 41);dl:(len: 8)), (fc:(freq:169);dl:(len: 8)),
|
|
(fc:(freq:105);dl:(len: 8)), (fc:(freq:233);dl:(len: 8)), (fc:(freq: 25);dl:(len: 8)),
|
|
(fc:(freq:153);dl:(len: 8)), (fc:(freq: 89);dl:(len: 8)), (fc:(freq:217);dl:(len: 8)),
|
|
(fc:(freq: 57);dl:(len: 8)), (fc:(freq:185);dl:(len: 8)), (fc:(freq:121);dl:(len: 8)),
|
|
(fc:(freq:249);dl:(len: 8)), (fc:(freq: 5);dl:(len: 8)), (fc:(freq:133);dl:(len: 8)),
|
|
(fc:(freq: 69);dl:(len: 8)), (fc:(freq:197);dl:(len: 8)), (fc:(freq: 37);dl:(len: 8)),
|
|
(fc:(freq:165);dl:(len: 8)), (fc:(freq:101);dl:(len: 8)), (fc:(freq:229);dl:(len: 8)),
|
|
(fc:(freq: 21);dl:(len: 8)), (fc:(freq:149);dl:(len: 8)), (fc:(freq: 85);dl:(len: 8)),
|
|
(fc:(freq:213);dl:(len: 8)), (fc:(freq: 53);dl:(len: 8)), (fc:(freq:181);dl:(len: 8)),
|
|
(fc:(freq:117);dl:(len: 8)), (fc:(freq:245);dl:(len: 8)), (fc:(freq: 13);dl:(len: 8)),
|
|
(fc:(freq:141);dl:(len: 8)), (fc:(freq: 77);dl:(len: 8)), (fc:(freq:205);dl:(len: 8)),
|
|
(fc:(freq: 45);dl:(len: 8)), (fc:(freq:173);dl:(len: 8)), (fc:(freq:109);dl:(len: 8)),
|
|
(fc:(freq:237);dl:(len: 8)), (fc:(freq: 29);dl:(len: 8)), (fc:(freq:157);dl:(len: 8)),
|
|
(fc:(freq: 93);dl:(len: 8)), (fc:(freq:221);dl:(len: 8)), (fc:(freq: 61);dl:(len: 8)),
|
|
(fc:(freq:189);dl:(len: 8)), (fc:(freq:125);dl:(len: 8)), (fc:(freq:253);dl:(len: 8)),
|
|
(fc:(freq: 19);dl:(len: 9)), (fc:(freq:275);dl:(len: 9)), (fc:(freq:147);dl:(len: 9)),
|
|
(fc:(freq:403);dl:(len: 9)), (fc:(freq: 83);dl:(len: 9)), (fc:(freq:339);dl:(len: 9)),
|
|
(fc:(freq:211);dl:(len: 9)), (fc:(freq:467);dl:(len: 9)), (fc:(freq: 51);dl:(len: 9)),
|
|
(fc:(freq:307);dl:(len: 9)), (fc:(freq:179);dl:(len: 9)), (fc:(freq:435);dl:(len: 9)),
|
|
(fc:(freq:115);dl:(len: 9)), (fc:(freq:371);dl:(len: 9)), (fc:(freq:243);dl:(len: 9)),
|
|
(fc:(freq:499);dl:(len: 9)), (fc:(freq: 11);dl:(len: 9)), (fc:(freq:267);dl:(len: 9)),
|
|
(fc:(freq:139);dl:(len: 9)), (fc:(freq:395);dl:(len: 9)), (fc:(freq: 75);dl:(len: 9)),
|
|
(fc:(freq:331);dl:(len: 9)), (fc:(freq:203);dl:(len: 9)), (fc:(freq:459);dl:(len: 9)),
|
|
(fc:(freq: 43);dl:(len: 9)), (fc:(freq:299);dl:(len: 9)), (fc:(freq:171);dl:(len: 9)),
|
|
(fc:(freq:427);dl:(len: 9)), (fc:(freq:107);dl:(len: 9)), (fc:(freq:363);dl:(len: 9)),
|
|
(fc:(freq:235);dl:(len: 9)), (fc:(freq:491);dl:(len: 9)), (fc:(freq: 27);dl:(len: 9)),
|
|
(fc:(freq:283);dl:(len: 9)), (fc:(freq:155);dl:(len: 9)), (fc:(freq:411);dl:(len: 9)),
|
|
(fc:(freq: 91);dl:(len: 9)), (fc:(freq:347);dl:(len: 9)), (fc:(freq:219);dl:(len: 9)),
|
|
(fc:(freq:475);dl:(len: 9)), (fc:(freq: 59);dl:(len: 9)), (fc:(freq:315);dl:(len: 9)),
|
|
(fc:(freq:187);dl:(len: 9)), (fc:(freq:443);dl:(len: 9)), (fc:(freq:123);dl:(len: 9)),
|
|
(fc:(freq:379);dl:(len: 9)), (fc:(freq:251);dl:(len: 9)), (fc:(freq:507);dl:(len: 9)),
|
|
(fc:(freq: 7);dl:(len: 9)), (fc:(freq:263);dl:(len: 9)), (fc:(freq:135);dl:(len: 9)),
|
|
(fc:(freq:391);dl:(len: 9)), (fc:(freq: 71);dl:(len: 9)), (fc:(freq:327);dl:(len: 9)),
|
|
(fc:(freq:199);dl:(len: 9)), (fc:(freq:455);dl:(len: 9)), (fc:(freq: 39);dl:(len: 9)),
|
|
(fc:(freq:295);dl:(len: 9)), (fc:(freq:167);dl:(len: 9)), (fc:(freq:423);dl:(len: 9)),
|
|
(fc:(freq:103);dl:(len: 9)), (fc:(freq:359);dl:(len: 9)), (fc:(freq:231);dl:(len: 9)),
|
|
(fc:(freq:487);dl:(len: 9)), (fc:(freq: 23);dl:(len: 9)), (fc:(freq:279);dl:(len: 9)),
|
|
(fc:(freq:151);dl:(len: 9)), (fc:(freq:407);dl:(len: 9)), (fc:(freq: 87);dl:(len: 9)),
|
|
(fc:(freq:343);dl:(len: 9)), (fc:(freq:215);dl:(len: 9)), (fc:(freq:471);dl:(len: 9)),
|
|
(fc:(freq: 55);dl:(len: 9)), (fc:(freq:311);dl:(len: 9)), (fc:(freq:183);dl:(len: 9)),
|
|
(fc:(freq:439);dl:(len: 9)), (fc:(freq:119);dl:(len: 9)), (fc:(freq:375);dl:(len: 9)),
|
|
(fc:(freq:247);dl:(len: 9)), (fc:(freq:503);dl:(len: 9)), (fc:(freq: 15);dl:(len: 9)),
|
|
(fc:(freq:271);dl:(len: 9)), (fc:(freq:143);dl:(len: 9)), (fc:(freq:399);dl:(len: 9)),
|
|
(fc:(freq: 79);dl:(len: 9)), (fc:(freq:335);dl:(len: 9)), (fc:(freq:207);dl:(len: 9)),
|
|
(fc:(freq:463);dl:(len: 9)), (fc:(freq: 47);dl:(len: 9)), (fc:(freq:303);dl:(len: 9)),
|
|
(fc:(freq:175);dl:(len: 9)), (fc:(freq:431);dl:(len: 9)), (fc:(freq:111);dl:(len: 9)),
|
|
(fc:(freq:367);dl:(len: 9)), (fc:(freq:239);dl:(len: 9)), (fc:(freq:495);dl:(len: 9)),
|
|
(fc:(freq: 31);dl:(len: 9)), (fc:(freq:287);dl:(len: 9)), (fc:(freq:159);dl:(len: 9)),
|
|
(fc:(freq:415);dl:(len: 9)), (fc:(freq: 95);dl:(len: 9)), (fc:(freq:351);dl:(len: 9)),
|
|
(fc:(freq:223);dl:(len: 9)), (fc:(freq:479);dl:(len: 9)), (fc:(freq: 63);dl:(len: 9)),
|
|
(fc:(freq:319);dl:(len: 9)), (fc:(freq:191);dl:(len: 9)), (fc:(freq:447);dl:(len: 9)),
|
|
(fc:(freq:127);dl:(len: 9)), (fc:(freq:383);dl:(len: 9)), (fc:(freq:255);dl:(len: 9)),
|
|
(fc:(freq:511);dl:(len: 9)), (fc:(freq: 0);dl:(len: 7)), (fc:(freq: 64);dl:(len: 7)),
|
|
(fc:(freq: 32);dl:(len: 7)), (fc:(freq: 96);dl:(len: 7)), (fc:(freq: 16);dl:(len: 7)),
|
|
(fc:(freq: 80);dl:(len: 7)), (fc:(freq: 48);dl:(len: 7)), (fc:(freq:112);dl:(len: 7)),
|
|
(fc:(freq: 8);dl:(len: 7)), (fc:(freq: 72);dl:(len: 7)), (fc:(freq: 40);dl:(len: 7)),
|
|
(fc:(freq:104);dl:(len: 7)), (fc:(freq: 24);dl:(len: 7)), (fc:(freq: 88);dl:(len: 7)),
|
|
(fc:(freq: 56);dl:(len: 7)), (fc:(freq:120);dl:(len: 7)), (fc:(freq: 4);dl:(len: 7)),
|
|
(fc:(freq: 68);dl:(len: 7)), (fc:(freq: 36);dl:(len: 7)), (fc:(freq:100);dl:(len: 7)),
|
|
(fc:(freq: 20);dl:(len: 7)), (fc:(freq: 84);dl:(len: 7)), (fc:(freq: 52);dl:(len: 7)),
|
|
(fc:(freq:116);dl:(len: 7)), (fc:(freq: 3);dl:(len: 8)), (fc:(freq:131);dl:(len: 8)),
|
|
(fc:(freq: 67);dl:(len: 8)), (fc:(freq:195);dl:(len: 8)), (fc:(freq: 35);dl:(len: 8)),
|
|
(fc:(freq:163);dl:(len: 8)), (fc:(freq: 99);dl:(len: 8)), (fc:(freq:227);dl:(len: 8))
|
|
);
|
|
|
|
|
|
{ The static distance tree. (Actually a trivial tree since all lens use
|
|
5 bits.) }
|
|
static_dtree : array[0..D_CODES-1] of ct_data = (
|
|
(fc:(freq: 0); dl:(len:5)), (fc:(freq:16); dl:(len:5)), (fc:(freq: 8); dl:(len:5)),
|
|
(fc:(freq:24); dl:(len:5)), (fc:(freq: 4); dl:(len:5)), (fc:(freq:20); dl:(len:5)),
|
|
(fc:(freq:12); dl:(len:5)), (fc:(freq:28); dl:(len:5)), (fc:(freq: 2); dl:(len:5)),
|
|
(fc:(freq:18); dl:(len:5)), (fc:(freq:10); dl:(len:5)), (fc:(freq:26); dl:(len:5)),
|
|
(fc:(freq: 6); dl:(len:5)), (fc:(freq:22); dl:(len:5)), (fc:(freq:14); dl:(len:5)),
|
|
(fc:(freq:30); dl:(len:5)), (fc:(freq: 1); dl:(len:5)), (fc:(freq:17); dl:(len:5)),
|
|
(fc:(freq: 9); dl:(len:5)), (fc:(freq:25); dl:(len:5)), (fc:(freq: 5); dl:(len:5)),
|
|
(fc:(freq:21); dl:(len:5)), (fc:(freq:13); dl:(len:5)), (fc:(freq:29); dl:(len:5)),
|
|
(fc:(freq: 3); dl:(len:5)), (fc:(freq:19); dl:(len:5)), (fc:(freq:11); dl:(len:5)),
|
|
(fc:(freq:27); dl:(len:5)), (fc:(freq: 7); dl:(len:5)), (fc:(freq:23); dl:(len:5))
|
|
);
|
|
|
|
{ Distance codes. The first 256 values correspond to the distances
|
|
3 .. 258, the last 256 values correspond to the top 8 bits of
|
|
the 15 bit distances. }
|
|
_dist_code : array[0..DIST_CODE_LEN-1] of uch = (
|
|
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
|
|
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
|
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
|
|
);
|
|
|
|
{ length code for each normalized match length (0 == MIN_MATCH) }
|
|
_length_code : array[0..MAX_MATCH-MIN_MATCH+1-1] of uch = (
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
|
|
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
|
|
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
|
|
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
|
|
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
|
|
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
|
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
|
|
);
|
|
|
|
|
|
{ First normalized length for each code (0 = MIN_MATCH) }
|
|
base_length : array[0..LENGTH_CODES-1] of int = (
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
|
|
64, 80, 96, 112, 128, 160, 192, 224, 0
|
|
);
|
|
|
|
|
|
{ First normalized distance for each code (0 = distance of 1) }
|
|
base_dist : array[0..D_CODES-1] of int = (
|
|
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
|
|
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
|
|
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
|
|
);
|
|
{$endif}
|
|
|
|
{ Output a byte on the stream.
|
|
IN assertion: there is enough room in pending_buf.
|
|
macro put_byte(s, c)
|
|
begin
|
|
s^.pending_buf^[s^.pending] := (c);
|
|
Inc(s^.pending);
|
|
end
|
|
}
|
|
|
|
const
|
|
MIN_LOOKAHEAD = (MAX_MATCH+MIN_MATCH+1);
|
|
{ Minimum amount of lookahead, except at the end of the input file.
|
|
See deflate.c for comments about the MIN_MATCH+1. }
|
|
|
|
{macro d_code(dist)
|
|
if (dist) < 256 then
|
|
:= _dist_code[dist]
|
|
else
|
|
:= _dist_code[256+((dist) shr 7)]);
|
|
Mapping from a distance to a distance code. dist is the distance - 1 and
|
|
must not have side effects. _dist_code[256] and _dist_code[257] are never
|
|
used. }
|
|
|
|
{$ifndef ORG_DEBUG}
|
|
{ Inline versions of _tr_tally for speed: }
|
|
|
|
#if defined(GEN_TREES_H) || !defined(STDC)
|
|
extern uch _length_code[];
|
|
extern uch _dist_code[];
|
|
#else
|
|
extern const uch _length_code[];
|
|
extern const uch _dist_code[];
|
|
#endif
|
|
|
|
macro _tr_tally_lit(s, c, flush)
|
|
var
|
|
cc : uch;
|
|
begin
|
|
cc := (c);
|
|
s^.d_buf[s^.last_lit] := 0;
|
|
s^.l_buf[s^.last_lit] := cc;
|
|
Inc(s^.last_lit);
|
|
Inc(s^.dyn_ltree[cc].fc.Freq);
|
|
flush := (s^.last_lit = s^.lit_bufsize-1);
|
|
end;
|
|
|
|
macro _tr_tally_dist(s, distance, length, flush) \
|
|
var
|
|
len : uch;
|
|
dist : ush;
|
|
begin
|
|
len := (length);
|
|
dist := (distance);
|
|
s^.d_buf[s^.last_lit] := dist;
|
|
s^.l_buf[s^.last_lit] = len;
|
|
Inc(s^.last_lit);
|
|
Dec(dist);
|
|
Inc(s^.dyn_ltree[_length_code[len]+LITERALS+1].fc.Freq);
|
|
Inc(s^.dyn_dtree[d_code(dist)].Freq);
|
|
flush := (s^.last_lit = s^.lit_bufsize-1);
|
|
end;
|
|
|
|
{$endif}
|
|
|
|
{ ===========================================================================
|
|
Constants }
|
|
|
|
const
|
|
MAX_BL_BITS = 7;
|
|
{ Bit length codes must not exceed MAX_BL_BITS bits }
|
|
|
|
const
|
|
END_BLOCK = 256;
|
|
{ end of block literal code }
|
|
|
|
const
|
|
REP_3_6 = 16;
|
|
{ repeat previous bit length 3-6 times (2 bits of repeat count) }
|
|
|
|
const
|
|
REPZ_3_10 = 17;
|
|
{ repeat a zero length 3-10 times (3 bits of repeat count) }
|
|
|
|
const
|
|
REPZ_11_138 = 18;
|
|
{ repeat a zero length 11-138 times (7 bits of repeat count) }
|
|
|
|
{local}
|
|
const
|
|
extra_lbits : array[0..LENGTH_CODES-1] of int
|
|
{ extra bits for each length code }
|
|
= (0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0);
|
|
|
|
{local}
|
|
const
|
|
extra_dbits : array[0..D_CODES-1] of int
|
|
{ extra bits for each distance code }
|
|
= (0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13);
|
|
|
|
{local}
|
|
const
|
|
extra_blbits : array[0..BL_CODES-1] of int { extra bits for each bit length code }
|
|
= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7);
|
|
|
|
{local}
|
|
const
|
|
bl_order : array[0..BL_CODES-1] of uch
|
|
= (16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15);
|
|
{ The lengths of the bit length codes are sent in order of decreasing
|
|
probability, to avoid transmitting the lengths for unused bit length codes.
|
|
}
|
|
|
|
const
|
|
Buf_size = (8 * 2*sizeof(char));
|
|
{ Number of bits used within bi_buf. (bi_buf might be implemented on
|
|
more than 16 bits on some systems.) }
|
|
|
|
{ ===========================================================================
|
|
Local data. These are initialized only once. }
|
|
|
|
|
|
{$ifdef GEN_TREES_H)}
|
|
{ non ANSI compilers may not accept trees.h }
|
|
|
|
const
|
|
DIST_CODE_LEN = 512; { see definition of array dist_code below }
|
|
|
|
{local}
|
|
var
|
|
static_ltree : array[0..L_CODES+2-1] of ct_data;
|
|
{ The static literal tree. Since the bit lengths are imposed, there is no
|
|
need for the L_CODES extra codes used during heap construction. However
|
|
The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
|
below). }
|
|
|
|
{local}
|
|
static_dtree : array[0..D_CODES-1] of ct_data;
|
|
{ The static distance tree. (Actually a trivial tree since all codes use
|
|
5 bits.) }
|
|
|
|
_dist_code : array[0..DIST_CODE_LEN-1] of uch;
|
|
{ Distance codes. The first 256 values correspond to the distances
|
|
3 .. 258, the last 256 values correspond to the top 8 bits of
|
|
the 15 bit distances. }
|
|
|
|
_length_code : array[0..MAX_MATCH-MIN_MATCH+1-1] of uch;
|
|
{ length code for each normalized match length (0 == MIN_MATCH) }
|
|
|
|
{local}
|
|
base_length : array[0..LENGTH_CODES-1] of int;
|
|
{ First normalized length for each code (0 = MIN_MATCH) }
|
|
|
|
{local}
|
|
base_dist : array[0..D_CODES-1] of int;
|
|
{ First normalized distance for each code (0 = distance of 1) }
|
|
|
|
{$endif} { GEN_TREES_H }
|
|
|
|
{local}
|
|
const
|
|
static_l_desc : static_tree_desc =
|
|
(static_tree: {tree_ptr}(@(static_ltree)); { pointer to array of ct_data }
|
|
extra_bits: {pzIntfArray}(@(extra_lbits)); { pointer to array of int }
|
|
extra_base: LITERALS+1;
|
|
elems: L_CODES;
|
|
max_length: MAX_BITS);
|
|
|
|
{local}
|
|
const
|
|
static_d_desc : static_tree_desc =
|
|
(static_tree: {tree_ptr}(@(static_dtree));
|
|
extra_bits: {pzIntfArray}(@(extra_dbits));
|
|
extra_base : 0;
|
|
elems: D_CODES;
|
|
max_length: MAX_BITS);
|
|
|
|
{local}
|
|
const
|
|
static_bl_desc : static_tree_desc =
|
|
(static_tree: {tree_ptr}(NIL);
|
|
extra_bits: {pzIntfArray}@(extra_blbits);
|
|
extra_base : 0;
|
|
elems: BL_CODES;
|
|
max_length: MAX_BL_BITS);
|
|
|
|
(* ===========================================================================
|
|
Local (static) routines in this file. }
|
|
|
|
procedure tr_static_init;
|
|
procedure init_block(var deflate_state);
|
|
procedure pqdownheap(var s : deflate_state;
|
|
var tree : ct_data;
|
|
k : int);
|
|
procedure gen_bitlen(var s : deflate_state;
|
|
var desc : tree_desc);
|
|
procedure gen_codes(var tree : ct_data;
|
|
max_code : int;
|
|
bl_count : pushf);
|
|
procedure build_tree(var s : deflate_state;
|
|
var desc : tree_desc);
|
|
procedure scan_tree(var s : deflate_state;
|
|
var tree : ct_data;
|
|
max_code : int);
|
|
procedure send_tree(var s : deflate_state;
|
|
var tree : ct_data;
|
|
max_code : int);
|
|
function build_bl_tree(var deflate_state) : int;
|
|
procedure send_all_trees(var deflate_state;
|
|
lcodes : int;
|
|
dcodes : int;
|
|
blcodes : int);
|
|
procedure compress_block(var s : deflate_state;
|
|
var ltree : ct_data;
|
|
var dtree : ct_data);
|
|
procedure set_data_type(var s : deflate_state);
|
|
function bi_reverse(value : unsigned;
|
|
length : int) : unsigned;
|
|
procedure bi_windup(var deflate_state);
|
|
procedure bi_flush(var deflate_state);
|
|
procedure copy_block(var deflate_state;
|
|
buf : pcharf;
|
|
len : unsigned;
|
|
header : int);
|
|
*)
|
|
|
|
{$ifdef GEN_TREES_H}
|
|
{local}
|
|
procedure gen_trees_header;
|
|
{$endif}
|
|
|
|
(*
|
|
{ ===========================================================================
|
|
Output a short LSB first on the stream.
|
|
IN assertion: there is enough room in pendingBuf. }
|
|
|
|
macro put_short(s, w)
|
|
begin
|
|
{put_byte(s, (uch)((w) & 0xff));}
|
|
s.pending_buf^[s.pending] := uch((w) and $ff);
|
|
Inc(s.pending);
|
|
|
|
{put_byte(s, (uch)((ush)(w) >> 8));}
|
|
s.pending_buf^[s.pending] := uch(ush(w) shr 8);;
|
|
Inc(s.pending);
|
|
end
|
|
*)
|
|
|
|
{ ===========================================================================
|
|
Send a value on a given number of bits.
|
|
IN assertion: length <= 16 and value fits in length bits. }
|
|
|
|
{$ifdef ORG_DEBUG}
|
|
|
|
{local}
|
|
procedure send_bits(var s : deflate_state;
|
|
value : int; { value to send }
|
|
length : int); { number of bits }
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Tracevv(' l '+IntToStr(length)+ ' v '+IntToStr(value));
|
|
Assert((length > 0) and (length <= 15), 'invalid length');
|
|
Inc(s.bits_sent, ulg(length));
|
|
{$ENDIF}
|
|
|
|
{ If not enough room in bi_buf, use (valid) bits from bi_buf and
|
|
(16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
|
|
unused bits in value. }
|
|
{$IFOPT Q+} {$Q-} {$DEFINE NoOverflowCheck} {$ENDIF}
|
|
{$IFOPT R+} {$R-} {$DEFINE NoRangeCheck} {$ENDIF}
|
|
if (s.bi_valid > int(Buf_size) - length) then
|
|
begin
|
|
s.bi_buf := s.bi_buf or int(value shl s.bi_valid);
|
|
{put_short(s, s.bi_buf);}
|
|
s.pending_buf^[s.pending] := uch(s.bi_buf and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(s.bi_buf) shr 8);;
|
|
Inc(s.pending);
|
|
|
|
s.bi_buf := ush(value) shr (Buf_size - s.bi_valid);
|
|
Inc(s.bi_valid, length - Buf_size);
|
|
end
|
|
else
|
|
begin
|
|
s.bi_buf := s.bi_buf or int(value shl s.bi_valid);
|
|
Inc(s.bi_valid, length);
|
|
end;
|
|
{$IFDEF NoOverflowCheck} {$Q+} {$UNDEF NoOverflowCheck} {$ENDIF}
|
|
{$IFDEF NoRangeCheck} {$Q+} {$UNDEF NoRangeCheck} {$ENDIF}
|
|
end;
|
|
|
|
{$else} { !DEBUG }
|
|
|
|
|
|
macro send_code(s, c, tree)
|
|
begin
|
|
send_bits(s, tree[c].Code, tree[c].Len);
|
|
{ Send a code of the given tree. c and tree must not have side effects }
|
|
end
|
|
|
|
macro send_bits(s, value, length) \
|
|
begin int len := length;\
|
|
if (s^.bi_valid > (int)Buf_size - len) begin\
|
|
int val := value;\
|
|
s^.bi_buf |= (val << s^.bi_valid);\
|
|
{put_short(s, s.bi_buf);}
|
|
s.pending_buf^[s.pending] := uch(s.bi_buf and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(s.bi_buf) shr 8);;
|
|
Inc(s.pending);
|
|
|
|
s^.bi_buf := (ush)val >> (Buf_size - s^.bi_valid);\
|
|
s^.bi_valid += len - Buf_size;\
|
|
end else begin\
|
|
s^.bi_buf |= (value) << s^.bi_valid;\
|
|
s^.bi_valid += len;\
|
|
end\
|
|
end;
|
|
{$endif} { DEBUG }
|
|
|
|
{ ===========================================================================
|
|
Reverse the first len bits of a code, using straightforward code (a faster
|
|
method would use a table)
|
|
IN assertion: 1 <= len <= 15 }
|
|
|
|
{local}
|
|
function bi_reverse(code : unsigned; { the value to invert }
|
|
len : int) : unsigned; { its bit length }
|
|
|
|
var
|
|
res : unsigned; {register}
|
|
begin
|
|
res := 0;
|
|
repeat
|
|
res := res or (code and 1);
|
|
code := code shr 1;
|
|
res := res shl 1;
|
|
Dec(len);
|
|
until (len <= 0);
|
|
bi_reverse := res shr 1;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Generate the codes for a given tree and bit counts (which need not be
|
|
optimal).
|
|
IN assertion: the array bl_count contains the bit length statistics for
|
|
the given tree and the field len is set for all tree elements.
|
|
OUT assertion: the field code is set for all tree elements of non
|
|
zero code length. }
|
|
|
|
{local}
|
|
procedure gen_codes(tree : tree_ptr; { the tree to decorate }
|
|
max_code : int; { largest code with non zero frequency }
|
|
var bl_count : array of ushf); { number of codes at each bit length }
|
|
|
|
var
|
|
next_code : array[0..MAX_BITS+1-1] of ush; { next code value for each bit length }
|
|
code : ush; { running code value }
|
|
bits : int; { bit index }
|
|
n : int; { code index }
|
|
var
|
|
len : int;
|
|
begin
|
|
code := 0;
|
|
|
|
{ The distribution counts are first used to generate the code values
|
|
without bit reversal. }
|
|
|
|
for bits := 1 to MAX_BITS do
|
|
begin
|
|
code := ((code + bl_count[bits-1]) shl 1);
|
|
next_code[bits] := code;
|
|
end;
|
|
{ Check that the bit counts in bl_count are consistent. The last code
|
|
must be all ones. }
|
|
|
|
{$IFDEF DEBUG}
|
|
Assert (code + bl_count[MAX_BITS]-1 = (1 shl MAX_BITS)-1,
|
|
'inconsistent bit counts');
|
|
Tracev(#13'gen_codes: max_code '+IntToStr(max_code));
|
|
{$ENDIF}
|
|
|
|
for n := 0 to max_code do
|
|
begin
|
|
len := tree^[n].dl.Len;
|
|
if (len = 0) then
|
|
continue;
|
|
{ Now reverse the bits }
|
|
tree^[n].fc.Code := bi_reverse(next_code[len], len);
|
|
Inc(next_code[len]);
|
|
{$ifdef DEBUG}
|
|
if (n>31) and (n<128) then
|
|
Tracecv(tree <> tree_ptr(@static_ltree),
|
|
(^M'n #'+IntToStr(n)+' '+char(n)+' l '+IntToStr(len)+' c '+
|
|
IntToStr(tree^[n].fc.Code)+' ('+IntToStr(next_code[len]-1)+')'))
|
|
else
|
|
Tracecv(tree <> tree_ptr(@static_ltree),
|
|
(^M'n #'+IntToStr(n)+' l '+IntToStr(len)+' c '+
|
|
IntToStr(tree^[n].fc.Code)+' ('+IntToStr(next_code[len]-1)+')'));
|
|
{$ENDIF}
|
|
end;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Genererate the file trees.h describing the static trees. }
|
|
{$ifdef GEN_TREES_H}
|
|
|
|
macro SEPARATOR(i, last, width)
|
|
if (i) = (last) then
|
|
( ^M');'^M^M
|
|
else \
|
|
if (i) mod (width) = (width)-1 then
|
|
','^M
|
|
else
|
|
', '
|
|
|
|
procedure gen_trees_header;
|
|
var
|
|
header : system.text;
|
|
i : int;
|
|
begin
|
|
system.assign(header, 'trees.inc');
|
|
{$I-}
|
|
ReWrite(header);
|
|
{$I+}
|
|
Assert (IOresult <> 0, 'Can''t open trees.h');
|
|
WriteLn(header,
|
|
'{ header created automatically with -DGEN_TREES_H }'^M);
|
|
|
|
WriteLn(header, 'local const ct_data static_ltree[L_CODES+2] := (');
|
|
for i := 0 to L_CODES+2-1 do
|
|
begin
|
|
WriteLn(header, '((%3u),(%3u))%s', static_ltree[i].Code,
|
|
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
|
|
end;
|
|
|
|
WriteLn(header, 'local const ct_data static_dtree[D_CODES] := (');
|
|
for i := 0 to D_CODES-1 do
|
|
begin
|
|
WriteLn(header, '((%2u),(%2u))%s', static_dtree[i].Code,
|
|
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
|
|
end;
|
|
|
|
WriteLn(header, 'const uch _dist_code[DIST_CODE_LEN] := (');
|
|
for i := 0 to DIST_CODE_LEN-1 do
|
|
begin
|
|
WriteLn(header, '%2u%s', _dist_code[i],
|
|
SEPARATOR(i, DIST_CODE_LEN-1, 20));
|
|
end;
|
|
|
|
WriteLn(header, 'const uch _length_code[MAX_MATCH-MIN_MATCH+1]= (');
|
|
for i := 0 to MAX_MATCH-MIN_MATCH+1-1 do
|
|
begin
|
|
WriteLn(header, '%2u%s', _length_code[i],
|
|
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
|
|
end;
|
|
|
|
WriteLn(header, 'local const int base_length[LENGTH_CODES] := (');
|
|
for i := 0 to LENGTH_CODES-1 do
|
|
begin
|
|
WriteLn(header, '%1u%s', base_length[i],
|
|
SEPARATOR(i, LENGTH_CODES-1, 20));
|
|
end;
|
|
|
|
WriteLn(header, 'local const int base_dist[D_CODES] := (');
|
|
for i := 0 to D_CODES-1 do
|
|
begin
|
|
WriteLn(header, '%5u%s', base_dist[i],
|
|
SEPARATOR(i, D_CODES-1, 10));
|
|
end;
|
|
|
|
close(header);
|
|
end;
|
|
{$endif} { GEN_TREES_H }
|
|
|
|
|
|
{ ===========================================================================
|
|
Initialize the various 'constant' tables. }
|
|
|
|
{local}
|
|
procedure tr_static_init;
|
|
|
|
{$ifdef GEN_TREES_H}
|
|
const
|
|
static_init_done : boolean = FALSE;
|
|
var
|
|
n : int; { iterates over tree elements }
|
|
bits : int; { bit counter }
|
|
length : int; { length value }
|
|
code : int; { code value }
|
|
dist : int; { distance index }
|
|
bl_count : array[0..MAX_BITS+1-1] of ush;
|
|
{ number of codes at each bit length for an optimal tree }
|
|
begin
|
|
if (static_init_done) then
|
|
exit;
|
|
|
|
{ Initialize the mapping length (0..255) -> length code (0..28) }
|
|
length := 0;
|
|
for code := 0 to LENGTH_CODES-1-1 do
|
|
begin
|
|
base_length[code] := length;
|
|
for n := 0 to (1 shl extra_lbits[code])-1 do
|
|
begin
|
|
_length_code[length] := uch(code);
|
|
Inc(length);
|
|
end;
|
|
end;
|
|
Assert (length = 256, 'tr_static_init: length <> 256');
|
|
{ Note that the length 255 (match length 258) can be represented
|
|
in two different ways: code 284 + 5 bits or code 285, so we
|
|
overwrite length_code[255] to use the best encoding: }
|
|
|
|
_length_code[length-1] := uch(code);
|
|
|
|
{ Initialize the mapping dist (0..32K) -> dist code (0..29) }
|
|
dist := 0;
|
|
for code := 0 to 16-1 do
|
|
begin
|
|
base_dist[code] := dist;
|
|
for n := 0 to (1 shl extra_dbits[code])-1 do
|
|
begin
|
|
_dist_code[dist] := uch(code);
|
|
Inc(dist);
|
|
end;
|
|
end;
|
|
Assert (dist = 256, 'tr_static_init: dist <> 256');
|
|
dist := dist shr 7; { from now on, all distances are divided by 128 }
|
|
for code := 16 to D_CODES-1 do
|
|
begin
|
|
base_dist[code] := dist shl 7;
|
|
for n := 0 to (1 shl (extra_dbits[code]-7))-1 do
|
|
begin
|
|
_dist_code[256 + dist] := uch(code);
|
|
Inc(dist);
|
|
end;
|
|
end;
|
|
Assert (dist = 256, 'tr_static_init: 256+dist <> 512');
|
|
|
|
{ Construct the codes of the static literal tree }
|
|
for bits := 0 to MAX_BITS do
|
|
bl_count[bits] := 0;
|
|
n := 0;
|
|
while (n <= 143) do
|
|
begin
|
|
static_ltree[n].dl.Len := 8;
|
|
Inc(n);
|
|
Inc(bl_count[8]);
|
|
end;
|
|
while (n <= 255) do
|
|
begin
|
|
static_ltree[n].dl.Len := 9;
|
|
Inc(n);
|
|
Inc(bl_count[9]);
|
|
end;
|
|
while (n <= 279) do
|
|
begin
|
|
static_ltree[n].dl.Len := 7;
|
|
Inc(n);
|
|
Inc(bl_count[7]);
|
|
end;
|
|
while (n <= 287) do
|
|
begin
|
|
static_ltree[n].dl.Len := 8;
|
|
Inc(n);
|
|
Inc(bl_count[8]);
|
|
end;
|
|
|
|
{ Codes 286 and 287 do not exist, but we must include them in the
|
|
tree construction to get a canonical Huffman tree (longest code
|
|
all ones) }
|
|
|
|
gen_codes(tree_ptr(@static_ltree), L_CODES+1, bl_count);
|
|
|
|
{ The static distance tree is trivial: }
|
|
for n := 0 to D_CODES-1 do
|
|
begin
|
|
static_dtree[n].dl.Len := 5;
|
|
static_dtree[n].fc.Code := bi_reverse(unsigned(n), 5);
|
|
end;
|
|
static_init_done := TRUE;
|
|
|
|
gen_trees_header; { save to include file }
|
|
{$else}
|
|
begin
|
|
{$endif} { GEN_TREES_H) }
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Initialize a new block. }
|
|
{local}
|
|
|
|
procedure init_block(var s : deflate_state);
|
|
var
|
|
n : int; { iterates over tree elements }
|
|
begin
|
|
{ Initialize the trees. }
|
|
for n := 0 to L_CODES-1 do
|
|
s.dyn_ltree[n].fc.Freq := 0;
|
|
for n := 0 to D_CODES-1 do
|
|
s.dyn_dtree[n].fc.Freq := 0;
|
|
for n := 0 to BL_CODES-1 do
|
|
s.bl_tree[n].fc.Freq := 0;
|
|
|
|
s.dyn_ltree[END_BLOCK].fc.Freq := 1;
|
|
s.static_len := Long(0);
|
|
s.opt_len := Long(0);
|
|
s.matches := 0;
|
|
s.last_lit := 0;
|
|
end;
|
|
|
|
const
|
|
SMALLEST = 1;
|
|
{ Index within the heap array of least frequent node in the Huffman tree }
|
|
|
|
{ ===========================================================================
|
|
Initialize the tree data structures for a new zlib stream. }
|
|
procedure _tr_init(var s : deflate_state);
|
|
begin
|
|
tr_static_init;
|
|
|
|
s.compressed_len := Long(0);
|
|
|
|
s.l_desc.dyn_tree := tree_ptr(@s.dyn_ltree);
|
|
s.l_desc.stat_desc := @static_l_desc;
|
|
|
|
s.d_desc.dyn_tree := tree_ptr(@s.dyn_dtree);
|
|
s.d_desc.stat_desc := @static_d_desc;
|
|
|
|
s.bl_desc.dyn_tree := tree_ptr(@s.bl_tree);
|
|
s.bl_desc.stat_desc := @static_bl_desc;
|
|
|
|
s.bi_buf := 0;
|
|
s.bi_valid := 0;
|
|
s.last_eob_len := 8; { enough lookahead for inflate }
|
|
{$ifdef DEBUG}
|
|
s.bits_sent := Long(0);
|
|
{$endif}
|
|
|
|
{ Initialize the first block of the first file: }
|
|
init_block(s);
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Remove the smallest element from the heap and recreate the heap with
|
|
one less element. Updates heap and heap_len.
|
|
|
|
macro pqremove(s, tree, top)
|
|
begin
|
|
top := s.heap[SMALLEST];
|
|
s.heap[SMALLEST] := s.heap[s.heap_len];
|
|
Dec(s.heap_len);
|
|
pqdownheap(s, tree, SMALLEST);
|
|
end
|
|
}
|
|
|
|
{ ===========================================================================
|
|
Compares to subtrees, using the tree depth as tie breaker when
|
|
the subtrees have equal frequency. This minimizes the worst case length.
|
|
|
|
macro smaller(tree, n, m, depth)
|
|
( (tree[n].Freq < tree[m].Freq) or
|
|
((tree[n].Freq = tree[m].Freq) and (depth[n] <= depth[m])) )
|
|
}
|
|
|
|
{ ===========================================================================
|
|
Restore the heap property by moving down the tree starting at node k,
|
|
exchanging a node with the smallest of its two sons if necessary, stopping
|
|
when the heap property is re-established (each father smaller than its
|
|
two sons). }
|
|
{local}
|
|
|
|
procedure pqdownheap(var s : deflate_state;
|
|
var tree : tree_type; { the tree to restore }
|
|
k : int); { node to move down }
|
|
var
|
|
v : int;
|
|
j : int;
|
|
begin
|
|
v := s.heap[k];
|
|
j := k shl 1; { left son of k }
|
|
while (j <= s.heap_len) do
|
|
begin
|
|
{ Set j to the smallest of the two sons: }
|
|
if (j < s.heap_len) and
|
|
{smaller(tree, s.heap[j+1], s.heap[j], s.depth)}
|
|
( (tree[s.heap[j+1]].fc.Freq < tree[s.heap[j]].fc.Freq) or
|
|
((tree[s.heap[j+1]].fc.Freq = tree[s.heap[j]].fc.Freq) and
|
|
(s.depth[s.heap[j+1]] <= s.depth[s.heap[j]])) ) then
|
|
begin
|
|
Inc(j);
|
|
end;
|
|
{ Exit if v is smaller than both sons }
|
|
if {(smaller(tree, v, s.heap[j], s.depth))}
|
|
( (tree[v].fc.Freq < tree[s.heap[j]].fc.Freq) or
|
|
((tree[v].fc.Freq = tree[s.heap[j]].fc.Freq) and
|
|
(s.depth[v] <= s.depth[s.heap[j]])) ) then
|
|
break;
|
|
{ Exchange v with the smallest son }
|
|
s.heap[k] := s.heap[j];
|
|
k := j;
|
|
|
|
{ And continue down the tree, setting j to the left son of k }
|
|
j := j shl 1;
|
|
end;
|
|
s.heap[k] := v;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Compute the optimal bit lengths for a tree and update the total bit length
|
|
for the current block.
|
|
IN assertion: the fields freq and dad are set, heap[heap_max] and
|
|
above are the tree nodes sorted by increasing frequency.
|
|
OUT assertions: the field len is set to the optimal bit length, the
|
|
array bl_count contains the frequencies for each bit length.
|
|
The length opt_len is updated; static_len is also updated if stree is
|
|
not null. }
|
|
|
|
{local}
|
|
procedure gen_bitlen(var s : deflate_state;
|
|
var desc : tree_desc); { the tree descriptor }
|
|
var
|
|
tree : tree_ptr;
|
|
max_code : int;
|
|
stree : tree_ptr; {const}
|
|
extra : pzIntfArray; {const}
|
|
base : int;
|
|
max_length : int;
|
|
h : int; { heap index }
|
|
n, m : int; { iterate over the tree elements }
|
|
bits : int; { bit length }
|
|
xbits : int; { extra bits }
|
|
f : ush; { frequency }
|
|
overflow : int; { number of elements with bit length too large }
|
|
begin
|
|
tree := desc.dyn_tree;
|
|
max_code := desc.max_code;
|
|
stree := desc.stat_desc^.static_tree;
|
|
extra := desc.stat_desc^.extra_bits;
|
|
base := desc.stat_desc^.extra_base;
|
|
max_length := desc.stat_desc^.max_length;
|
|
overflow := 0;
|
|
|
|
for bits := 0 to MAX_BITS do
|
|
s.bl_count[bits] := 0;
|
|
|
|
{ In a first pass, compute the optimal bit lengths (which may
|
|
overflow in the case of the bit length tree). }
|
|
|
|
tree^[s.heap[s.heap_max]].dl.Len := 0; { root of the heap }
|
|
|
|
for h := s.heap_max+1 to HEAP_SIZE-1 do
|
|
begin
|
|
n := s.heap[h];
|
|
bits := tree^[tree^[n].dl.Dad].dl.Len + 1;
|
|
if (bits > max_length) then
|
|
begin
|
|
bits := max_length;
|
|
Inc(overflow);
|
|
end;
|
|
tree^[n].dl.Len := ush(bits);
|
|
{ We overwrite tree[n].dl.Dad which is no longer needed }
|
|
|
|
if (n > max_code) then
|
|
continue; { not a leaf node }
|
|
|
|
Inc(s.bl_count[bits]);
|
|
xbits := 0;
|
|
if (n >= base) then
|
|
xbits := extra^[n-base];
|
|
f := tree^[n].fc.Freq;
|
|
Inc(s.opt_len, ulg(f) * (bits + xbits));
|
|
if (stree <> NIL) then
|
|
Inc(s.static_len, ulg(f) * (stree^[n].dl.Len + xbits));
|
|
end;
|
|
if (overflow = 0) then
|
|
exit;
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'bit length overflow');
|
|
{$endif}
|
|
{ This happens for example on obj2 and pic of the Calgary corpus }
|
|
|
|
{ Find the first bit length which could increase: }
|
|
repeat
|
|
bits := max_length-1;
|
|
while (s.bl_count[bits] = 0) do
|
|
Dec(bits);
|
|
Dec(s.bl_count[bits]); { move one leaf down the tree }
|
|
Inc(s.bl_count[bits+1], 2); { move one overflow item as its brother }
|
|
Dec(s.bl_count[max_length]);
|
|
{ The brother of the overflow item also moves one step up,
|
|
but this does not affect bl_count[max_length] }
|
|
|
|
Dec(overflow, 2);
|
|
until (overflow <= 0);
|
|
|
|
{ Now recompute all bit lengths, scanning in increasing frequency.
|
|
h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
|
lengths instead of fixing only the wrong ones. This idea is taken
|
|
from 'ar' written by Haruhiko Okumura.) }
|
|
h := HEAP_SIZE; { Delphi3: compiler warning w/o this }
|
|
for bits := max_length downto 1 do
|
|
begin
|
|
n := s.bl_count[bits];
|
|
while (n <> 0) do
|
|
begin
|
|
Dec(h);
|
|
m := s.heap[h];
|
|
if (m > max_code) then
|
|
continue;
|
|
if (tree^[m].dl.Len <> unsigned(bits)) then
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Trace('code '+IntToStr(m)+' bits '+IntToStr(tree^[m].dl.Len)
|
|
+'.'+IntToStr(bits));
|
|
{$ENDIF}
|
|
Inc(s.opt_len, (long(bits) - long(tree^[m].dl.Len))
|
|
* long(tree^[m].fc.Freq) );
|
|
tree^[m].dl.Len := ush(bits);
|
|
end;
|
|
Dec(n);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Construct one Huffman tree and assigns the code bit strings and lengths.
|
|
Update the total bit length for the current block.
|
|
IN assertion: the field freq is set for all tree elements.
|
|
OUT assertions: the fields len and code are set to the optimal bit length
|
|
and corresponding code. The length opt_len is updated; static_len is
|
|
also updated if stree is not null. The field max_code is set. }
|
|
|
|
{local}
|
|
procedure build_tree(var s : deflate_state;
|
|
var desc : tree_desc); { the tree descriptor }
|
|
|
|
var
|
|
tree : tree_ptr;
|
|
stree : tree_ptr; {const}
|
|
elems : int;
|
|
n, m : int; { iterate over heap elements }
|
|
max_code : int; { largest code with non zero frequency }
|
|
node : int; { new node being created }
|
|
begin
|
|
tree := desc.dyn_tree;
|
|
stree := desc.stat_desc^.static_tree;
|
|
elems := desc.stat_desc^.elems;
|
|
max_code := -1;
|
|
|
|
{ Construct the initial heap, with least frequent element in
|
|
heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
|
heap[0] is not used. }
|
|
s.heap_len := 0;
|
|
s.heap_max := HEAP_SIZE;
|
|
|
|
for n := 0 to elems-1 do
|
|
begin
|
|
if (tree^[n].fc.Freq <> 0) then
|
|
begin
|
|
max_code := n;
|
|
Inc(s.heap_len);
|
|
s.heap[s.heap_len] := n;
|
|
s.depth[n] := 0;
|
|
end
|
|
else
|
|
begin
|
|
tree^[n].dl.Len := 0;
|
|
end;
|
|
end;
|
|
|
|
{ The pkzip format requires that at least one distance code exists,
|
|
and that at least one bit should be sent even if there is only one
|
|
possible code. So to avoid special checks later on we force at least
|
|
two codes of non zero frequency. }
|
|
|
|
while (s.heap_len < 2) do
|
|
begin
|
|
Inc(s.heap_len);
|
|
if (max_code < 2) then
|
|
begin
|
|
Inc(max_code);
|
|
s.heap[s.heap_len] := max_code;
|
|
node := max_code;
|
|
end
|
|
else
|
|
begin
|
|
s.heap[s.heap_len] := 0;
|
|
node := 0;
|
|
end;
|
|
tree^[node].fc.Freq := 1;
|
|
s.depth[node] := 0;
|
|
Dec(s.opt_len);
|
|
if (stree <> NIL) then
|
|
Dec(s.static_len, stree^[node].dl.Len);
|
|
{ node is 0 or 1 so it does not have extra bits }
|
|
end;
|
|
desc.max_code := max_code;
|
|
|
|
{ The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
|
establish sub-heaps of increasing lengths: }
|
|
|
|
for n := s.heap_len div 2 downto 1 do
|
|
pqdownheap(s, tree^, n);
|
|
|
|
{ Construct the Huffman tree by repeatedly combining the least two
|
|
frequent nodes. }
|
|
|
|
node := elems; { next internal node of the tree }
|
|
repeat
|
|
{pqremove(s, tree, n);} { n := node of least frequency }
|
|
n := s.heap[SMALLEST];
|
|
s.heap[SMALLEST] := s.heap[s.heap_len];
|
|
Dec(s.heap_len);
|
|
pqdownheap(s, tree^, SMALLEST);
|
|
|
|
m := s.heap[SMALLEST]; { m := node of next least frequency }
|
|
|
|
Dec(s.heap_max);
|
|
s.heap[s.heap_max] := n; { keep the nodes sorted by frequency }
|
|
Dec(s.heap_max);
|
|
s.heap[s.heap_max] := m;
|
|
|
|
{ Create a new node father of n and m }
|
|
tree^[node].fc.Freq := tree^[n].fc.Freq + tree^[m].fc.Freq;
|
|
{ maximum }
|
|
if (s.depth[n] >= s.depth[m]) then
|
|
s.depth[node] := uch (s.depth[n] + 1)
|
|
else
|
|
s.depth[node] := uch (s.depth[m] + 1);
|
|
|
|
tree^[m].dl.Dad := ush(node);
|
|
tree^[n].dl.Dad := ush(node);
|
|
{$ifdef DUMP_BL_TREE}
|
|
if (tree = tree_ptr(@s.bl_tree)) then
|
|
begin
|
|
WriteLn(#13'node ',node,'(',tree^[node].fc.Freq,') sons ',n,
|
|
'(',tree^[n].fc.Freq,') ', m, '(',tree^[m].fc.Freq,')');
|
|
end;
|
|
{$endif}
|
|
{ and insert the new node in the heap }
|
|
s.heap[SMALLEST] := node;
|
|
Inc(node);
|
|
pqdownheap(s, tree^, SMALLEST);
|
|
|
|
until (s.heap_len < 2);
|
|
|
|
Dec(s.heap_max);
|
|
s.heap[s.heap_max] := s.heap[SMALLEST];
|
|
|
|
{ At this point, the fields freq and dad are set. We can now
|
|
generate the bit lengths. }
|
|
|
|
gen_bitlen(s, desc);
|
|
|
|
{ The field len is now set, we can generate the bit codes }
|
|
gen_codes (tree, max_code, s.bl_count);
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Scan a literal or distance tree to determine the frequencies of the codes
|
|
in the bit length tree. }
|
|
|
|
{local}
|
|
procedure scan_tree(var s : deflate_state;
|
|
var tree : array of ct_data; { the tree to be scanned }
|
|
max_code : int); { and its largest code of non zero frequency }
|
|
var
|
|
n : int; { iterates over all tree elements }
|
|
prevlen : int; { last emitted length }
|
|
curlen : int; { length of current code }
|
|
nextlen : int; { length of next code }
|
|
count : int; { repeat count of the current code }
|
|
max_count : int; { max repeat count }
|
|
min_count : int; { min repeat count }
|
|
begin
|
|
prevlen := -1;
|
|
nextlen := tree[0].dl.Len;
|
|
count := 0;
|
|
max_count := 7;
|
|
min_count := 4;
|
|
|
|
if (nextlen = 0) then
|
|
begin
|
|
max_count := 138;
|
|
min_count := 3;
|
|
end;
|
|
tree[max_code+1].dl.Len := ush($ffff); { guard }
|
|
|
|
for n := 0 to max_code do
|
|
begin
|
|
curlen := nextlen;
|
|
nextlen := tree[n+1].dl.Len;
|
|
Inc(count);
|
|
if (count < max_count) and (curlen = nextlen) then
|
|
continue
|
|
else
|
|
if (count < min_count) then
|
|
Inc(s.bl_tree[curlen].fc.Freq, count)
|
|
else
|
|
if (curlen <> 0) then
|
|
begin
|
|
if (curlen <> prevlen) then
|
|
Inc(s.bl_tree[curlen].fc.Freq);
|
|
Inc(s.bl_tree[REP_3_6].fc.Freq);
|
|
end
|
|
else
|
|
if (count <= 10) then
|
|
Inc(s.bl_tree[REPZ_3_10].fc.Freq)
|
|
else
|
|
Inc(s.bl_tree[REPZ_11_138].fc.Freq);
|
|
|
|
count := 0;
|
|
prevlen := curlen;
|
|
if (nextlen = 0) then
|
|
begin
|
|
max_count := 138;
|
|
min_count := 3;
|
|
end
|
|
else
|
|
if (curlen = nextlen) then
|
|
begin
|
|
max_count := 6;
|
|
min_count := 3;
|
|
end
|
|
else
|
|
begin
|
|
max_count := 7;
|
|
min_count := 4;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Send a literal or distance tree in compressed form, using the codes in
|
|
bl_tree. }
|
|
|
|
{local}
|
|
procedure send_tree(var s : deflate_state;
|
|
var tree : array of ct_data; { the tree to be scanned }
|
|
max_code : int); { and its largest code of non zero frequency }
|
|
|
|
var
|
|
n : int; { iterates over all tree elements }
|
|
prevlen : int; { last emitted length }
|
|
curlen : int; { length of current code }
|
|
nextlen : int; { length of next code }
|
|
count : int; { repeat count of the current code }
|
|
max_count : int; { max repeat count }
|
|
min_count : int; { min repeat count }
|
|
begin
|
|
prevlen := -1;
|
|
nextlen := tree[0].dl.Len;
|
|
count := 0;
|
|
max_count := 7;
|
|
min_count := 4;
|
|
|
|
{ tree[max_code+1].dl.Len := -1; } { guard already set }
|
|
if (nextlen = 0) then
|
|
begin
|
|
max_count := 138;
|
|
min_count := 3;
|
|
end;
|
|
|
|
for n := 0 to max_code do
|
|
begin
|
|
curlen := nextlen;
|
|
nextlen := tree[n+1].dl.Len;
|
|
Inc(count);
|
|
if (count < max_count) and (curlen = nextlen) then
|
|
continue
|
|
else
|
|
if (count < min_count) then
|
|
begin
|
|
repeat
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(curlen));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[curlen].fc.Code, s.bl_tree[curlen].dl.Len);
|
|
Dec(count);
|
|
until (count = 0);
|
|
end
|
|
else
|
|
if (curlen <> 0) then
|
|
begin
|
|
if (curlen <> prevlen) then
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(curlen));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[curlen].fc.Code, s.bl_tree[curlen].dl.Len);
|
|
Dec(count);
|
|
end;
|
|
{$IFDEF DEBUG}
|
|
Assert((count >= 3) and (count <= 6), ' 3_6?');
|
|
{$ENDIF}
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(REP_3_6));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[REP_3_6].fc.Code, s.bl_tree[REP_3_6].dl.Len);
|
|
send_bits(s, count-3, 2);
|
|
end
|
|
else
|
|
if (count <= 10) then
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(REPZ_3_10));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[REPZ_3_10].fc.Code, s.bl_tree[REPZ_3_10].dl.Len);
|
|
send_bits(s, count-3, 3);
|
|
end
|
|
else
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(REPZ_11_138));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[REPZ_11_138].fc.Code, s.bl_tree[REPZ_11_138].dl.Len);
|
|
send_bits(s, count-11, 7);
|
|
end;
|
|
count := 0;
|
|
prevlen := curlen;
|
|
if (nextlen = 0) then
|
|
begin
|
|
max_count := 138;
|
|
min_count := 3;
|
|
end
|
|
else
|
|
if (curlen = nextlen) then
|
|
begin
|
|
max_count := 6;
|
|
min_count := 3;
|
|
end
|
|
else
|
|
begin
|
|
max_count := 7;
|
|
min_count := 4;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Construct the Huffman tree for the bit lengths and return the index in
|
|
bl_order of the last bit length code to send. }
|
|
|
|
{local}
|
|
function build_bl_tree(var s : deflate_state) : int;
|
|
var
|
|
max_blindex : int; { index of last bit length code of non zero freq }
|
|
begin
|
|
{ Determine the bit length frequencies for literal and distance trees }
|
|
scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
|
|
scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
|
|
|
|
{ Build the bit length tree: }
|
|
build_tree(s, s.bl_desc);
|
|
{ opt_len now includes the length of the tree representations, except
|
|
the lengths of the bit lengths codes and the 5+5+4 bits for the counts. }
|
|
|
|
{ Determine the number of bit length codes to send. The pkzip format
|
|
requires that at least 4 bit length codes be sent. (appnote.txt says
|
|
3 but the actual value used is 4.) }
|
|
|
|
for max_blindex := BL_CODES-1 downto 3 do
|
|
begin
|
|
if (s.bl_tree[bl_order[max_blindex]].dl.Len <> 0) then
|
|
break;
|
|
end;
|
|
{ Update opt_len to include the bit length tree and counts }
|
|
Inc(s.opt_len, 3*(max_blindex+1) + 5+5+4);
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'dyn trees: dyn %ld, stat %ld {s.opt_len, s.static_len}');
|
|
{$ENDIF}
|
|
|
|
build_bl_tree := max_blindex;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Send the header for a block using dynamic Huffman trees: the counts, the
|
|
lengths of the bit length codes, the literal tree and the distance tree.
|
|
IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. }
|
|
|
|
{local}
|
|
procedure send_all_trees(var s : deflate_state;
|
|
lcodes : int;
|
|
dcodes : int;
|
|
blcodes : int); { number of codes for each tree }
|
|
var
|
|
rank : int; { index in bl_order }
|
|
begin
|
|
{$IFDEF DEBUG}
|
|
Assert ((lcodes >= 257) and (dcodes >= 1) and (blcodes >= 4),
|
|
'not enough codes');
|
|
Assert ((lcodes <= L_CODES) and (dcodes <= D_CODES)
|
|
and (blcodes <= BL_CODES), 'too many codes');
|
|
Tracev(^M'bl counts: ');
|
|
{$ENDIF}
|
|
send_bits(s, lcodes-257, 5); { not +255 as stated in appnote.txt }
|
|
send_bits(s, dcodes-1, 5);
|
|
send_bits(s, blcodes-4, 4); { not -3 as stated in appnote.txt }
|
|
for rank := 0 to blcodes-1 do
|
|
begin
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'bl code '+IntToStr(bl_order[rank]));
|
|
{$ENDIF}
|
|
send_bits(s, s.bl_tree[bl_order[rank]].dl.Len, 3);
|
|
end;
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'bl tree: sent '+IntToStr(s.bits_sent));
|
|
{$ENDIF}
|
|
|
|
send_tree(s, s.dyn_ltree, lcodes-1); { literal tree }
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'lit tree: sent '+IntToStr(s.bits_sent));
|
|
{$ENDIF}
|
|
|
|
send_tree(s, s.dyn_dtree, dcodes-1); { distance tree }
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'dist tree: sent '+IntToStr(s.bits_sent));
|
|
{$ENDIF}
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Flush the bit buffer and align the output on a byte boundary }
|
|
|
|
{local}
|
|
procedure bi_windup(var s : deflate_state);
|
|
begin
|
|
if (s.bi_valid > 8) then
|
|
begin
|
|
{put_short(s, s.bi_buf);}
|
|
s.pending_buf^[s.pending] := uch(s.bi_buf and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(s.bi_buf) shr 8);;
|
|
Inc(s.pending);
|
|
end
|
|
else
|
|
if (s.bi_valid > 0) then
|
|
begin
|
|
{put_byte(s, (Byte)s^.bi_buf);}
|
|
s.pending_buf^[s.pending] := Byte(s.bi_buf);
|
|
Inc(s.pending);
|
|
end;
|
|
s.bi_buf := 0;
|
|
s.bi_valid := 0;
|
|
{$ifdef DEBUG}
|
|
s.bits_sent := (s.bits_sent+7) and (not 7);
|
|
{$endif}
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Copy a stored block, storing first the length and its
|
|
one's complement if requested. }
|
|
|
|
{local}
|
|
procedure copy_block(var s : deflate_state;
|
|
buf : pcharf; { the input data }
|
|
len : unsigned; { its length }
|
|
header : boolean); { true if block header must be written }
|
|
begin
|
|
bi_windup(s); { align on byte boundary }
|
|
s.last_eob_len := 8; { enough lookahead for inflate }
|
|
|
|
if (header) then
|
|
begin
|
|
{put_short(s, (ush)len);}
|
|
s.pending_buf^[s.pending] := uch(ush(len) and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(len) shr 8);;
|
|
Inc(s.pending);
|
|
{put_short(s, (ush)~len);}
|
|
s.pending_buf^[s.pending] := uch(ush(not len) and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(not len) shr 8);;
|
|
Inc(s.pending);
|
|
|
|
{$ifdef DEBUG}
|
|
Inc(s.bits_sent, 2*16);
|
|
{$endif}
|
|
end;
|
|
{$ifdef DEBUG}
|
|
Inc(s.bits_sent, ulg(len shl 3));
|
|
{$endif}
|
|
while (len <> 0) do
|
|
begin
|
|
Dec(len);
|
|
{put_byte(s, *buf++);}
|
|
s.pending_buf^[s.pending] := buf^;
|
|
Inc(buf);
|
|
Inc(s.pending);
|
|
end;
|
|
end;
|
|
|
|
|
|
{ ===========================================================================
|
|
Send a stored block }
|
|
|
|
procedure _tr_stored_block(var s : deflate_state;
|
|
buf : pcharf; { input block }
|
|
stored_len : ulg; { length of input block }
|
|
eof : boolean); { true if this is the last block for a file }
|
|
|
|
begin
|
|
send_bits(s, (STORED_BLOCK shl 1)+ord(eof), 3); { send block type }
|
|
s.compressed_len := (s.compressed_len + 3 + 7) and ulg(not Long(7));
|
|
Inc(s.compressed_len, (stored_len + 4) shl 3);
|
|
|
|
copy_block(s, buf, unsigned(stored_len), TRUE); { with header }
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Flush the bit buffer, keeping at most 7 bits in it. }
|
|
|
|
{local}
|
|
procedure bi_flush(var s : deflate_state);
|
|
begin
|
|
if (s.bi_valid = 16) then
|
|
begin
|
|
{put_short(s, s.bi_buf);}
|
|
s.pending_buf^[s.pending] := uch(s.bi_buf and $ff);
|
|
Inc(s.pending);
|
|
s.pending_buf^[s.pending] := uch(ush(s.bi_buf) shr 8);;
|
|
Inc(s.pending);
|
|
|
|
s.bi_buf := 0;
|
|
s.bi_valid := 0;
|
|
end
|
|
else
|
|
if (s.bi_valid >= 8) then
|
|
begin
|
|
{put_byte(s, (Byte)s^.bi_buf);}
|
|
s.pending_buf^[s.pending] := Byte(s.bi_buf);
|
|
Inc(s.pending);
|
|
|
|
s.bi_buf := s.bi_buf shr 8;
|
|
Dec(s.bi_valid, 8);
|
|
end;
|
|
end;
|
|
|
|
|
|
{ ===========================================================================
|
|
Send one empty static block to give enough lookahead for inflate.
|
|
This takes 10 bits, of which 7 may remain in the bit buffer.
|
|
The current inflate code requires 9 bits of lookahead. If the
|
|
last two codes for the previous block (real code plus EOB) were coded
|
|
on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
|
|
the last real code. In this case we send two empty static blocks instead
|
|
of one. (There are no problems if the previous block is stored or fixed.)
|
|
To simplify the code, we assume the worst case of last real code encoded
|
|
on one bit only. }
|
|
|
|
procedure _tr_align(var s : deflate_state);
|
|
begin
|
|
send_bits(s, STATIC_TREES shl 1, 3);
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(END_BLOCK));
|
|
{$ENDIF}
|
|
send_bits(s, static_ltree[END_BLOCK].fc.Code, static_ltree[END_BLOCK].dl.Len);
|
|
Inc(s.compressed_len, Long(10)); { 3 for block type, 7 for EOB }
|
|
bi_flush(s);
|
|
{ Of the 10 bits for the empty block, we have already sent
|
|
(10 - bi_valid) bits. The lookahead for the last real code (before
|
|
the EOB of the previous block) was thus at least one plus the length
|
|
of the EOB plus what we have just sent of the empty static block. }
|
|
if (1 + s.last_eob_len + 10 - s.bi_valid < 9) then
|
|
begin
|
|
send_bits(s, STATIC_TREES shl 1, 3);
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(END_BLOCK));
|
|
{$ENDIF}
|
|
send_bits(s, static_ltree[END_BLOCK].fc.Code, static_ltree[END_BLOCK].dl.Len);
|
|
Inc(s.compressed_len, Long(10));
|
|
bi_flush(s);
|
|
end;
|
|
s.last_eob_len := 7;
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Set the data type to ASCII or BINARY, using a crude approximation:
|
|
binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
|
IN assertion: the fields freq of dyn_ltree are set and the total of all
|
|
frequencies does not exceed 64K (to fit in an int on 16 bit machines). }
|
|
|
|
{local}
|
|
procedure set_data_type(var s : deflate_state);
|
|
var
|
|
n : int;
|
|
ascii_freq : unsigned;
|
|
bin_freq : unsigned;
|
|
begin
|
|
n := 0;
|
|
ascii_freq := 0;
|
|
bin_freq := 0;
|
|
|
|
while (n < 7) do
|
|
begin
|
|
Inc(bin_freq, s.dyn_ltree[n].fc.Freq);
|
|
Inc(n);
|
|
end;
|
|
while (n < 128) do
|
|
begin
|
|
Inc(ascii_freq, s.dyn_ltree[n].fc.Freq);
|
|
Inc(n);
|
|
end;
|
|
while (n < LITERALS) do
|
|
begin
|
|
Inc(bin_freq, s.dyn_ltree[n].fc.Freq);
|
|
Inc(n);
|
|
end;
|
|
if (bin_freq > (ascii_freq shr 2)) then
|
|
s.data_type := Byte(Z_BINARY)
|
|
else
|
|
s.data_type := Byte(Z_ASCII);
|
|
end;
|
|
|
|
{ ===========================================================================
|
|
Send the block data compressed using the given Huffman trees }
|
|
|
|
{local}
|
|
procedure compress_block(var s : deflate_state;
|
|
var ltree : array of ct_data; { literal tree }
|
|
var dtree : array of ct_data); { distance tree }
|
|
var
|
|
dist : unsigned; { distance of matched string }
|
|
lc : int; { match length or unmatched char (if dist == 0) }
|
|
lx : unsigned; { running index in l_buf }
|
|
code : unsigned; { the code to send }
|
|
extra : int; { number of extra bits to send }
|
|
begin
|
|
lx := 0;
|
|
if (s.last_lit <> 0) then
|
|
repeat
|
|
dist := s.d_buf^[lx];
|
|
lc := s.l_buf^[lx];
|
|
Inc(lx);
|
|
if (dist = 0) then
|
|
begin
|
|
{ send a literal byte }
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(lc));
|
|
Tracecv((lc > 31) and (lc < 128), ' '+char(lc)+' ');
|
|
{$ENDIF}
|
|
send_bits(s, ltree[lc].fc.Code, ltree[lc].dl.Len);
|
|
end
|
|
else
|
|
begin
|
|
{ Here, lc is the match length - MIN_MATCH }
|
|
code := _length_code[lc];
|
|
{ send the length code }
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(code+LITERALS+1));
|
|
{$ENDIF}
|
|
send_bits(s, ltree[code+LITERALS+1].fc.Code, ltree[code+LITERALS+1].dl.Len);
|
|
extra := extra_lbits[code];
|
|
if (extra <> 0) then
|
|
begin
|
|
Dec(lc, base_length[code]);
|
|
send_bits(s, lc, extra); { send the extra length bits }
|
|
end;
|
|
Dec(dist); { dist is now the match distance - 1 }
|
|
{code := d_code(dist);}
|
|
if (dist < 256) then
|
|
code := _dist_code[dist]
|
|
else
|
|
code := _dist_code[256+(dist shr 7)];
|
|
|
|
{$IFDEF DEBUG}
|
|
Assert (code < D_CODES, 'bad d_code');
|
|
{$ENDIF}
|
|
|
|
{ send the distance code }
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(code));
|
|
{$ENDIF}
|
|
send_bits(s, dtree[code].fc.Code, dtree[code].dl.Len);
|
|
extra := extra_dbits[code];
|
|
if (extra <> 0) then
|
|
begin
|
|
Dec(dist, base_dist[code]);
|
|
send_bits(s, dist, extra); { send the extra distance bits }
|
|
end;
|
|
end; { literal or match pair ? }
|
|
|
|
{ Check that the overlay between pending_buf and d_buf+l_buf is ok: }
|
|
{$IFDEF DEBUG}
|
|
Assert(s.pending < s.lit_bufsize + 2*lx, 'pendingBuf overflow');
|
|
{$ENDIF}
|
|
until (lx >= s.last_lit);
|
|
|
|
{$ifdef DEBUG}
|
|
Tracevvv(#13'cd '+IntToStr(END_BLOCK));
|
|
{$ENDIF}
|
|
send_bits(s, ltree[END_BLOCK].fc.Code, ltree[END_BLOCK].dl.Len);
|
|
s.last_eob_len := ltree[END_BLOCK].dl.Len;
|
|
end;
|
|
|
|
|
|
{ ===========================================================================
|
|
Determine the best encoding for the current block: dynamic trees, static
|
|
trees or store, and output the encoded block to the zip file. This function
|
|
returns the total compressed length for the file so far. }
|
|
|
|
function _tr_flush_block (var s : deflate_state;
|
|
buf : pcharf; { input block, or NULL if too old }
|
|
stored_len : ulg; { length of input block }
|
|
eof : boolean) : ulg; { true if this is the last block for a file }
|
|
var
|
|
opt_lenb, static_lenb : ulg; { opt_len and static_len in bytes }
|
|
max_blindex : int; { index of last bit length code of non zero freq }
|
|
begin
|
|
max_blindex := 0;
|
|
|
|
{ Build the Huffman trees unless a stored block is forced }
|
|
if (s.level > 0) then
|
|
begin
|
|
{ Check if the file is ascii or binary }
|
|
if (s.data_type = Z_UNKNOWN) then
|
|
set_data_type(s);
|
|
|
|
{ Construct the literal and distance trees }
|
|
build_tree(s, s.l_desc);
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'lit data: dyn %ld, stat %ld {s.opt_len, s.static_len}');
|
|
{$ENDIF}
|
|
|
|
build_tree(s, s.d_desc);
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'dist data: dyn %ld, stat %ld {s.opt_len, s.static_len}');
|
|
{$ENDIF}
|
|
{ At this point, opt_len and static_len are the total bit lengths of
|
|
the compressed block data, excluding the tree representations. }
|
|
|
|
{ Build the bit length tree for the above two trees, and get the index
|
|
in bl_order of the last bit length code to send. }
|
|
max_blindex := build_bl_tree(s);
|
|
|
|
{ Determine the best encoding. Compute first the block length in bytes}
|
|
opt_lenb := (s.opt_len+3+7) shr 3;
|
|
static_lenb := (s.static_len+3+7) shr 3;
|
|
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'opt %lu(%lu) stat %lu(%lu) stored %lu lit %u '+
|
|
'{opt_lenb, s.opt_len, static_lenb, s.static_len, stored_len,'+
|
|
's.last_lit}');
|
|
{$ENDIF}
|
|
|
|
if (static_lenb <= opt_lenb) then
|
|
opt_lenb := static_lenb;
|
|
|
|
end
|
|
else
|
|
begin
|
|
{$IFDEF DEBUG}
|
|
Assert(buf <> pcharf(NIL), 'lost buf');
|
|
{$ENDIF}
|
|
static_lenb := stored_len + 5;
|
|
opt_lenb := static_lenb; { force a stored block }
|
|
end;
|
|
|
|
{ If compression failed and this is the first and last block,
|
|
and if the .zip file can be seeked (to rewrite the local header),
|
|
the whole file is transformed into a stored file: }
|
|
|
|
{$ifdef STORED_FILE_OK}
|
|
{$ifdef FORCE_STORED_FILE}
|
|
if eof and (s.compressed_len = Long(0)) then
|
|
begin { force stored file }
|
|
{$else}
|
|
if (stored_len <= opt_lenb) and eof and (s.compressed_len=Long(0))
|
|
and seekable()) do
|
|
begin
|
|
{$endif}
|
|
{ Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: }
|
|
if (buf = pcharf(0)) then
|
|
error ('block vanished');
|
|
|
|
copy_block(buf, unsigned(stored_len), 0); { without header }
|
|
s.compressed_len := stored_len shl 3;
|
|
s.method := STORED;
|
|
end
|
|
else
|
|
{$endif} { STORED_FILE_OK }
|
|
|
|
{$ifdef FORCE_STORED}
|
|
if (buf <> pchar(0)) then
|
|
begin { force stored block }
|
|
{$else}
|
|
if (stored_len+4 <= opt_lenb) and (buf <> pcharf(0)) then
|
|
begin
|
|
{ 4: two words for the lengths }
|
|
{$endif}
|
|
{ The test buf <> NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
|
Otherwise we can't have processed more than WSIZE input bytes since
|
|
the last block flush, because compression would have been
|
|
successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
|
transform a block into a stored block. }
|
|
|
|
_tr_stored_block(s, buf, stored_len, eof);
|
|
|
|
{$ifdef FORCE_STATIC}
|
|
end
|
|
else
|
|
if (static_lenb >= 0) then
|
|
begin { force static trees }
|
|
{$else}
|
|
end
|
|
else
|
|
if (static_lenb = opt_lenb) then
|
|
begin
|
|
{$endif}
|
|
send_bits(s, (STATIC_TREES shl 1)+ord(eof), 3);
|
|
compress_block(s, static_ltree, static_dtree);
|
|
Inc(s.compressed_len, 3 + s.static_len);
|
|
end
|
|
else
|
|
begin
|
|
send_bits(s, (DYN_TREES shl 1)+ord(eof), 3);
|
|
send_all_trees(s, s.l_desc.max_code+1, s.d_desc.max_code+1,
|
|
max_blindex+1);
|
|
compress_block(s, s.dyn_ltree, s.dyn_dtree);
|
|
Inc(s.compressed_len, 3 + s.opt_len);
|
|
end;
|
|
{$ifdef DEBUG}
|
|
Assert (s.compressed_len = s.bits_sent, 'bad compressed size');
|
|
{$ENDIF}
|
|
init_block(s);
|
|
|
|
if (eof) then
|
|
begin
|
|
bi_windup(s);
|
|
Inc(s.compressed_len, 7); { align on byte boundary }
|
|
end;
|
|
{$ifdef DEBUG}
|
|
Tracev(#13'comprlen %lu(%lu) {s.compressed_len shr 3,'+
|
|
's.compressed_len-7*ord(eof)}');
|
|
{$ENDIF}
|
|
|
|
_tr_flush_block := s.compressed_len shr 3;
|
|
end;
|
|
|
|
|
|
{ ===========================================================================
|
|
Save the match info and tally the frequency counts. Return true if
|
|
the current block must be flushed. }
|
|
|
|
function _tr_tally (var s : deflate_state;
|
|
dist : unsigned; { distance of matched string }
|
|
lc : unsigned) : boolean; { match length-MIN_MATCH or unmatched char (if dist=0) }
|
|
var
|
|
{$IFDEF DEBUG}
|
|
MAX_DIST : ush;
|
|
{$ENDIF}
|
|
code : ush;
|
|
{$ifdef TRUNCATE_BLOCK}
|
|
var
|
|
out_length : ulg;
|
|
in_length : ulg;
|
|
dcode : int;
|
|
{$endif}
|
|
begin
|
|
s.d_buf^[s.last_lit] := ush(dist);
|
|
s.l_buf^[s.last_lit] := uch(lc);
|
|
Inc(s.last_lit);
|
|
if (dist = 0) then
|
|
begin
|
|
{ lc is the unmatched char }
|
|
Inc(s.dyn_ltree[lc].fc.Freq);
|
|
end
|
|
else
|
|
begin
|
|
Inc(s.matches);
|
|
{ Here, lc is the match length - MIN_MATCH }
|
|
Dec(dist); { dist := match distance - 1 }
|
|
|
|
{macro d_code(dist)}
|
|
if (dist) < 256 then
|
|
code := _dist_code[dist]
|
|
else
|
|
code := _dist_code[256+(dist shr 7)];
|
|
{$IFDEF DEBUG}
|
|
{macro MAX_DIST(s) <=> ((s)^.w_size-MIN_LOOKAHEAD)
|
|
In order to simplify the code, particularly on 16 bit machines, match
|
|
distances are limited to MAX_DIST instead of WSIZE. }
|
|
MAX_DIST := ush(s.w_size-MIN_LOOKAHEAD);
|
|
Assert((dist < ush(MAX_DIST)) and
|
|
(ush(lc) <= ush(MAX_MATCH-MIN_MATCH)) and
|
|
(ush(code) < ush(D_CODES)), '_tr_tally: bad match');
|
|
{$ENDIF}
|
|
Inc(s.dyn_ltree[_length_code[lc]+LITERALS+1].fc.Freq);
|
|
{s.dyn_dtree[d_code(dist)].Freq++;}
|
|
Inc(s.dyn_dtree[code].fc.Freq);
|
|
end;
|
|
|
|
{$ifdef TRUNCATE_BLOCK}
|
|
{ Try to guess if it is profitable to stop the current block here }
|
|
if (s.last_lit and $1fff = 0) and (s.level > 2) then
|
|
begin
|
|
{ Compute an upper bound for the compressed length }
|
|
out_length := ulg(s.last_lit)*Long(8);
|
|
in_length := ulg(long(s.strstart) - s.block_start);
|
|
for dcode := 0 to D_CODES-1 do
|
|
begin
|
|
Inc(out_length, ulg(s.dyn_dtree[dcode].fc.Freq *
|
|
(Long(5)+extra_dbits[dcode])) );
|
|
end;
|
|
out_length := out_length shr 3;
|
|
{$ifdef DEBUG}
|
|
Tracev(^M'last_lit %u, in %ld, out ~%ld(%ld%%) ');
|
|
{ s.last_lit, in_length, out_length,
|
|
Long(100) - out_length*Long(100) div in_length)); }
|
|
{$ENDIF}
|
|
if (s.matches < s.last_lit div 2) and (out_length < in_length div 2) then
|
|
begin
|
|
_tr_tally := TRUE;
|
|
exit;
|
|
end;
|
|
end;
|
|
{$endif}
|
|
_tr_tally := (s.last_lit = s.lit_bufsize-1);
|
|
{ We avoid equality with lit_bufsize because of wraparound at 64K
|
|
on 16 bit machines and because stored blocks are restricted to
|
|
64K-1 bytes. }
|
|
end;
|
|
|
|
end. |