CentrED/Imaging/JpegLib/imjdphuff.pas

1062 lines
32 KiB
Plaintext

unit imjdphuff;
{ This file contains Huffman entropy decoding routines for progressive JPEG.
Much of the complexity here has to do with supporting input suspension.
If the data source module demands suspension, we want to be able to back
up to the start of the current MCU. To do this, we copy state variables
into local working storage, and update them back to the permanent
storage only upon successful completion of an MCU. }
{ Original: jdphuff.c ; Copyright (C) 1995-1997, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjpeglib,
imjdeferr,
imjerror,
imjutils,
imjdhuff; { Declarations shared with jdhuff.c }
{GLOBAL}
procedure jinit_phuff_decoder (cinfo : j_decompress_ptr);
implementation
{ Expanded entropy decoder object for progressive Huffman decoding.
The savable_state subrecord contains fields that change within an MCU,
but must not be updated permanently until we complete the MCU. }
type
savable_state = record
EOBRUN : uInt; { remaining EOBs in EOBRUN }
last_dc_val : array[00..MAX_COMPS_IN_SCAN-1] of int;
{ last DC coef for each component }
end;
type
phuff_entropy_ptr = ^phuff_entropy_decoder;
phuff_entropy_decoder = record
pub : jpeg_entropy_decoder; { public fields }
{ These fields are loaded into local variables at start of each MCU.
In case of suspension, we exit WITHOUT updating them. }
bitstate : bitread_perm_state; { Bit buffer at start of MCU }
saved : savable_state; { Other state at start of MCU }
{ These fields are NOT loaded into local working state. }
restarts_to_go : uInt; { MCUs left in this restart interval }
{ Pointers to derived tables (these workspaces have image lifespan) }
derived_tbls : array[0..NUM_HUFF_TBLS-1] of d_derived_tbl_ptr;
ac_derived_tbl : d_derived_tbl_ptr; { active table during an AC scan }
end;
{ Forward declarations }
{METHODDEF}
function decode_mcu_DC_first (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
forward;
{METHODDEF}
function decode_mcu_AC_first (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
forward;
{METHODDEF}
function decode_mcu_DC_refine (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
forward;
{METHODDEF}
function decode_mcu_AC_refine (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
forward;
{ Initialize for a Huffman-compressed scan. }
{METHODDEF}
procedure start_pass_phuff_decoder (cinfo : j_decompress_ptr);
var
entropy : phuff_entropy_ptr;
is_DC_band, bad : boolean;
ci, coefi, tbl : int;
coef_bit_ptr : coef_bits_ptr;
compptr : jpeg_component_info_ptr;
var
cindex : int;
expected : int;
begin
entropy := phuff_entropy_ptr (cinfo^.entropy);
is_DC_band := (cinfo^.Ss = 0);
{ Validate scan parameters }
bad := FALSE;
if (is_DC_band) then
begin
if (cinfo^.Se <> 0) then
bad := TRUE;
end
else
begin
{ need not check Ss/Se < 0 since they came from unsigned bytes }
if (cinfo^.Ss > cinfo^.Se) or (cinfo^.Se >= DCTSIZE2) then
bad := TRUE;
{ AC scans may have only one component }
if (cinfo^.comps_in_scan <> 1) then
bad := TRUE;
end;
if (cinfo^.Ah <> 0) then
begin
{ Successive approximation refinement scan: must have Al = Ah-1. }
if (cinfo^.Al <> cinfo^.Ah-1) then
bad := TRUE;
end;
if (cinfo^.Al > 13) then { need not check for < 0 }
bad := TRUE;
{ Arguably the maximum Al value should be less than 13 for 8-bit precision,
but the spec doesn't say so, and we try to be liberal about what we
accept. Note: large Al values could result in out-of-range DC
coefficients during early scans, leading to bizarre displays due to
overflows in the IDCT math. But we won't crash. }
if (bad) then
ERREXIT4(j_common_ptr(cinfo), JERR_BAD_PROGRESSION,
cinfo^.Ss, cinfo^.Se, cinfo^.Ah, cinfo^.Al);
{ Update progression status, and verify that scan order is legal.
Note that inter-scan inconsistencies are treated as warnings
not fatal errors ... not clear if this is right way to behave. }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
cindex := cinfo^.cur_comp_info[ci]^.component_index;
coef_bit_ptr := coef_bits_ptr(@(cinfo^.coef_bits^[cindex])); {^[0] ???
Nomssi }
if (not is_DC_band) and (coef_bit_ptr^[0] < 0) then
{ AC without prior DC scan }
WARNMS2(j_common_ptr(cinfo), JWRN_BOGUS_PROGRESSION, cindex, 0);
for coefi := cinfo^.Ss to cinfo^.Se do
begin
if (coef_bit_ptr^[coefi] < 0) then
expected := 0
else
expected := coef_bit_ptr^[coefi];
if (cinfo^.Ah <> expected) then
WARNMS2(j_common_ptr(cinfo), JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr^[coefi] := cinfo^.Al;
end;
end;
{ Select MCU decoding routine }
if (cinfo^.Ah = 0) then
begin
if (is_DC_band) then
entropy^.pub.decode_mcu := decode_mcu_DC_first
else
entropy^.pub.decode_mcu := decode_mcu_AC_first;
end
else
begin
if (is_DC_band) then
entropy^.pub.decode_mcu := decode_mcu_DC_refine
else
entropy^.pub.decode_mcu := decode_mcu_AC_refine;
end;
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
{ Make sure requested tables are present, and compute derived tables.
We may build same derived table more than once, but it's not expensive. }
if (is_DC_band) then
begin
if (cinfo^.Ah = 0) then
begin { DC refinement needs no table }
tbl := compptr^.dc_tbl_no;
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
entropy^.derived_tbls[tbl]);
end;
end
else
begin
tbl := compptr^.ac_tbl_no;
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
entropy^.derived_tbls[tbl]);
{ remember the single active table }
entropy^.ac_derived_tbl := entropy^.derived_tbls[tbl];
end;
{ Initialize DC predictions to 0 }
entropy^.saved.last_dc_val[ci] := 0;
end;
{ Initialize bitread state variables }
entropy^.bitstate.bits_left := 0;
entropy^.bitstate.get_buffer := 0; { unnecessary, but keeps Purify quiet }
entropy^.pub.insufficient_data := FALSE;
{ Initialize private state variables }
entropy^.saved.EOBRUN := 0;
{ Initialize restart counter }
entropy^.restarts_to_go := cinfo^.restart_interval;
end;
{ Figure F.12: extend sign bit.
On some machines, a shift and add will be faster than a table lookup. }
{$ifdef AVOID_TABLES}
#define HUFF_EXTEND(x,s)
((x) < (1shl((s)-1)) ? (x) + (((-1)shl(s)) + 1) : (x))
{$else}
{ #define HUFF_EXTEND(x,s)
if (x) < extend_test[s] then
(x) + extend_offset[s]
else
(x)}
const
extend_test : Array[0..16-1] of int = { entry n is 2**(n-1) }
($0000, $0001, $0002, $0004, $0008, $0010, $0020, $0040,
$0080, $0100, $0200, $0400, $0800, $1000, $2000, $4000);
const
extend_offset : array[0..16-1] of int = { entry n is (-1 shl n) + 1 }
( 0, ((-1) shl 1) + 1, ((-1) shl 2) + 1, ((-1) shl 3) + 1, ((-1) shl 4) + 1,
((-1) shl 5) + 1, ((-1) shl 6) + 1, ((-1) shl 7) + 1, ((-1) shl 8) + 1,
((-1) shl 9) + 1, ((-1) shl 10) + 1, ((-1) shl 11) + 1, ((-1) shl 12) + 1,
((-1) shl 13) + 1, ((-1) shl 14) + 1, ((-1) shl 15) + 1 );
{$endif} { AVOID_TABLES }
{ Check for a restart marker & resynchronize decoder.
return:=s FALSE if must suspend. }
{LOCAL}
function process_restart (cinfo : j_decompress_ptr) : boolean;
var
entropy : phuff_entropy_ptr;
ci : int;
begin
entropy := phuff_entropy_ptr (cinfo^.entropy);
{ Throw away any unused bits remaining in bit buffer; }
{ include any full bytes in next_marker's count of discarded bytes }
Inc(cinfo^.marker^.discarded_bytes, entropy^.bitstate.bits_left div 8);
entropy^.bitstate.bits_left := 0;
{ Advance past the RSTn marker }
if (not cinfo^.marker^.read_restart_marker (cinfo)) then
begin
process_restart := FALSE;
exit;
end;
{ Re-initialize DC predictions to 0 }
for ci := 0 to pred(cinfo^.comps_in_scan) do
entropy^.saved.last_dc_val[ci] := 0;
{ Re-init EOB run count, too }
entropy^.saved.EOBRUN := 0;
{ Reset restart counter }
entropy^.restarts_to_go := cinfo^.restart_interval;
{ Reset out-of-data flag, unless read_restart_marker left us smack up
against a marker. In that case we will end up treating the next data
segment as empty, and we can avoid producing bogus output pixels by
leaving the flag set. }
if (cinfo^.unread_marker = 0) then
entropy^.pub.insufficient_data := FALSE;
process_restart := TRUE;
end;
{ Huffman MCU decoding.
Each of these routines decodes and returns one MCU's worth of
Huffman-compressed coefficients.
The coefficients are reordered from zigzag order into natural array order,
but are not dequantized.
The i'th block of the MCU is stored into the block pointed to by
MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
We return FALSE if data source requested suspension. In that case no
changes have been made to permanent state. (Exception: some output
coefficients may already have been assigned. This is harmless for
spectral selection, since we'll just re-assign them on the next call.
Successive approximation AC refinement has to be more careful, however.) }
{ MCU decoding for DC initial scan (either spectral selection,
or first pass of successive approximation). }
{METHODDEF}
function decode_mcu_DC_first (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
label
label1;
var
entropy : phuff_entropy_ptr;
Al : int;
{register} s, r : int;
blkn, ci : int;
block : JBLOCK_PTR;
{BITREAD_STATE_VARS;}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
state : savable_state;
tbl : d_derived_tbl_ptr;
compptr : jpeg_component_info_ptr;
var
nb, look : int; {register}
begin
entropy := phuff_entropy_ptr (cinfo^.entropy);
Al := cinfo^.Al;
{ Process restart marker if needed; may have to suspend }
if (cinfo^.restart_interval <> 0) then
begin
if (entropy^.restarts_to_go = 0) then
if (not process_restart(cinfo)) then
begin
decode_mcu_DC_first := FALSE;
exit;
end;
end;
{ If we've run out of data, just leave the MCU set to zeroes.
This way, we return uniform gray for the remainder of the segment. }
if not entropy^.pub.insufficient_data then
begin
{ Load up working state }
{BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);}
br_state.cinfo := cinfo;
br_state.next_input_byte := cinfo^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
get_buffer := entropy^.bitstate.get_buffer;
bits_left := entropy^.bitstate.bits_left;
{ASSIGN_STATE(state, entropy^.saved);}
state := entropy^.saved;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do
begin
block := JBLOCK_PTR(MCU_data[blkn]);
ci := cinfo^.MCU_membership[blkn];
compptr := cinfo^.cur_comp_info[ci];
tbl := entropy^.derived_tbls[compptr^.dc_tbl_no];
{ Decode a single block's worth of coefficients }
{ Section F.2.2.1: decode the DC coefficient difference }
{HUFF_DECODE(s, br_state, tbl, return FALSE, label1);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu_DC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto label1;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := tbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
label1:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb);
if (s < 0) then
begin
decode_mcu_DC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
if (s <> 0) then
begin
{CHECK_BIT_BUFFER(br_state, s, return FALSE);}
if (bits_left < s) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then
begin
decode_mcu_DC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(s);}
Dec(bits_left, s);
r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);}
if (r < extend_test[s]) then
s := r + extend_offset[s]
else
s := r;
end;
{ Convert DC difference to actual value, update last_dc_val }
Inc(s, state.last_dc_val[ci]);
state.last_dc_val[ci] := s;
{ Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) }
block^[0] := JCOEF (s shl Al);
end;
{ Completed MCU, so update state }
{BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);}
cinfo^.src^.next_input_byte := br_state.next_input_byte;
cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer;
entropy^.bitstate.get_buffer := get_buffer;
entropy^.bitstate.bits_left := bits_left;
{ASSIGN_STATE(entropy^.saved, state);}
entropy^.saved := state;
end;
{ Account for restart interval (no-op if not using restarts) }
Dec(entropy^.restarts_to_go);
decode_mcu_DC_first := TRUE;
end;
{ MCU decoding for AC initial scan (either spectral selection,
or first pass of successive approximation). }
{METHODDEF}
function decode_mcu_AC_first (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
label
label2;
var
entropy : phuff_entropy_ptr;
Se : int;
Al : int;
{register} s, k, r : int;
EOBRUN : uInt;
block : JBLOCK_PTR;
{BITREAD_STATE_VARS;}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
tbl : d_derived_tbl_ptr;
var
nb, look : int; {register}
begin
entropy := phuff_entropy_ptr (cinfo^.entropy);
Se := cinfo^.Se;
Al := cinfo^.Al;
{ Process restart marker if needed; may have to suspend }
if (cinfo^.restart_interval <> 0) then
begin
if (entropy^.restarts_to_go = 0) then
if (not process_restart(cinfo)) then
begin
decode_mcu_AC_first := FALSE;
exit;
end;
end;
{ If we've run out of data, just leave the MCU set to zeroes.
This way, we return uniform gray for the remainder of the segment. }
if not entropy^.pub.insufficient_data then
begin
{ Load up working state.
We can avoid loading/saving bitread state if in an EOB run. }
EOBRUN := entropy^.saved.EOBRUN; { only part of saved state we care about }
{ There is always only one block per MCU }
if (EOBRUN > 0) then { if it's a band of zeroes... }
Dec(EOBRUN) { ...process it now (we do nothing) }
else
begin
{BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);}
br_state.cinfo := cinfo;
br_state.next_input_byte := cinfo^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
get_buffer := entropy^.bitstate.get_buffer;
bits_left := entropy^.bitstate.bits_left;
block := JBLOCK_PTR(MCU_data[0]);
tbl := entropy^.ac_derived_tbl;
k := cinfo^.Ss;
while (k <= Se) do
begin
{HUFF_DECODE(s, br_state, tbl, return FALSE, label2);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu_AC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto label2;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := tbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
label2:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb);
if (s < 0) then
begin
decode_mcu_AC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
r := s shr 4;
s := s and 15;
if (s <> 0) then
begin
Inc(k, r);
{CHECK_BIT_BUFFER(br_state, s, return FALSE);}
if (bits_left < s) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then
begin
decode_mcu_AC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(s);}
Dec(bits_left, s);
r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);}
if (r < extend_test[s]) then
s := r + extend_offset[s]
else
s := r;
{ Scale and output coefficient in natural (dezigzagged) order }
block^[jpeg_natural_order[k]] := JCOEF (s shl Al);
end
else
begin
if (r = 15) then
begin { ZRL }
Inc(k, 15); { skip 15 zeroes in band }
end
else
begin { EOBr, run length is 2^r + appended bits }
EOBRUN := 1 shl r;
if (r <> 0) then
begin { EOBr, r > 0 }
{CHECK_BIT_BUFFER(br_state, r, return FALSE);}
if (bits_left < r) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,r)) then
begin
decode_mcu_AC_first := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(r);}
Dec(bits_left, r);
r := (int(get_buffer shr bits_left)) and ( pred(1 shl r) );
Inc(EOBRUN, r);
end;
Dec(EOBRUN); { this band is processed at this moment }
break; { force end-of-band }
end;
end;
Inc(k);
end;
{BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);}
cinfo^.src^.next_input_byte := br_state.next_input_byte;
cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer;
entropy^.bitstate.get_buffer := get_buffer;
entropy^.bitstate.bits_left := bits_left;
end;
{ Completed MCU, so update state }
entropy^.saved.EOBRUN := EOBRUN; { only part of saved state we care about }
end;
{ Account for restart interval (no-op if not using restarts) }
Dec(entropy^.restarts_to_go);
decode_mcu_AC_first := TRUE;
end;
{ MCU decoding for DC successive approximation refinement scan.
Note: we assume such scans can be multi-component, although the spec
is not very clear on the point. }
{METHODDEF}
function decode_mcu_DC_refine (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
var
entropy : phuff_entropy_ptr;
p1 : int; { 1 in the bit position being coded }
blkn : int;
block : JBLOCK_PTR;
{BITREAD_STATE_VARS;}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
begin
entropy := phuff_entropy_ptr (cinfo^.entropy);
p1 := 1 shl cinfo^.Al;
{ Process restart marker if needed; may have to suspend }
if (cinfo^.restart_interval <> 0) then
begin
if (entropy^.restarts_to_go = 0) then
if (not process_restart(cinfo)) then
begin
decode_mcu_DC_refine := FALSE;
exit;
end;
end;
{ Not worth the cycles to check insufficient_data here,
since we will not change the data anyway if we read zeroes. }
{ Load up working state }
{BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);}
br_state.cinfo := cinfo;
br_state.next_input_byte := cinfo^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
get_buffer := entropy^.bitstate.get_buffer;
bits_left := entropy^.bitstate.bits_left;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do
begin
block := JBLOCK_PTR(MCU_data[blkn]);
{ Encoded data is simply the next bit of the two's-complement DC value }
{CHECK_BIT_BUFFER(br_state, 1, return FALSE);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then
begin
decode_mcu_DC_refine := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{if (GET_BITS(1)) then}
Dec(bits_left);
if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) ) <> 0 then
block^[0] := block^[0] or p1;
{ Note: since we use OR, repeating the assignment later is safe }
end;
{ Completed MCU, so update state }
{BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);}
cinfo^.src^.next_input_byte := br_state.next_input_byte;
cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer;
entropy^.bitstate.get_buffer := get_buffer;
entropy^.bitstate.bits_left := bits_left;
{ Account for restart interval (no-op if not using restarts) }
Dec(entropy^.restarts_to_go);
decode_mcu_DC_refine := TRUE;
end;
{ MCU decoding for AC successive approximation refinement scan. }
{METHODDEF}
function decode_mcu_AC_refine (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean;
label
undoit, label3;
var
entropy : phuff_entropy_ptr;
Se : int;
p1 : int; { 1 in the bit position being coded }
m1 : int; { -1 in the bit position being coded }
{register} s, k, r : int;
EOBRUN : uInt;
block : JBLOCK_PTR;
thiscoef : JCOEF_PTR;
{BITREAD_STATE_VARS;}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
tbl : d_derived_tbl_ptr;
num_newnz : int;
newnz_pos : array[0..DCTSIZE2-1] of int;
var
pos : int;
var
nb, look : int; {register}
begin
num_newnz := 0;
block := nil;
entropy := phuff_entropy_ptr (cinfo^.entropy);
Se := cinfo^.Se;
p1 := 1 shl cinfo^.Al; { 1 in the bit position being coded }
m1 := (-1) shl cinfo^.Al; { -1 in the bit position being coded }
{ Process restart marker if needed; may have to suspend }
if (cinfo^.restart_interval <> 0) then
begin
if (entropy^.restarts_to_go = 0) then
if (not process_restart(cinfo)) then
begin
decode_mcu_AC_refine := FALSE;
exit;
end;
end;
{ If we've run out of data, don't modify the MCU. }
if not entropy^.pub.insufficient_data then
begin
{ Load up working state }
{BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);}
br_state.cinfo := cinfo;
br_state.next_input_byte := cinfo^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
get_buffer := entropy^.bitstate.get_buffer;
bits_left := entropy^.bitstate.bits_left;
EOBRUN := entropy^.saved.EOBRUN; { only part of saved state we care about }
{ There is always only one block per MCU }
block := JBLOCK_PTR(MCU_data[0]);
tbl := entropy^.ac_derived_tbl;
{ If we are forced to suspend, we must undo the assignments to any newly
nonzero coefficients in the block, because otherwise we'd get confused
next time about which coefficients were already nonzero.
But we need not undo addition of bits to already-nonzero coefficients;
instead, we can test the current bit position to see if we already did it.}
num_newnz := 0;
{ initialize coefficient loop counter to start of band }
k := cinfo^.Ss;
if (EOBRUN = 0) then
begin
while (k <= Se) do
begin
{HUFF_DECODE(s, br_state, tbl, goto undoit, label3);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto label3;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := tbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
label3:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb);
if (s < 0) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
r := s shr 4;
s := s and 15;
if (s <> 0) then
begin
if (s <> 1) then { size of new coef should always be 1 }
WARNMS(j_common_ptr(cinfo), JWRN_HUFF_BAD_CODE);
{CHECK_BIT_BUFFER(br_state, 1, goto undoit);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{if (GET_BITS(1)) then}
Dec(bits_left);
if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then
s := p1 { newly nonzero coef is positive }
else
s := m1; { newly nonzero coef is negative }
end
else
begin
if (r <> 15) then
begin
EOBRUN := 1 shl r; { EOBr, run length is 2^r + appended bits }
if (r <> 0) then
begin
{CHECK_BIT_BUFFER(br_state, r, goto undoit);}
if (bits_left < r) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,r)) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(r);}
Dec(bits_left, r);
r := (int(get_buffer shr bits_left)) and ( pred(1 shl r) );
Inc(EOBRUN, r);
end;
break; { rest of block is handled by EOB logic }
end;
{ note s := 0 for processing ZRL }
end;
{ Advance over already-nonzero coefs and r still-zero coefs,
appending correction bits to the nonzeroes. A correction bit is 1
if the absolute value of the coefficient must be increased. }
repeat
thiscoef :=@(block^[jpeg_natural_order[k]]);
if (thiscoef^ <> 0) then
begin
{CHECK_BIT_BUFFER(br_state, 1, goto undoit);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{if (GET_BITS(1)) then}
Dec(bits_left);
if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then
begin
if ((thiscoef^ and p1) = 0) then
begin { do nothing if already set it }
if (thiscoef^ >= 0) then
Inc(thiscoef^, p1)
else
Inc(thiscoef^, m1);
end;
end;
end
else
begin
Dec(r);
if (r < 0) then
break; { reached target zero coefficient }
end;
Inc(k);
until (k > Se);
if (s <> 0) then
begin
pos := jpeg_natural_order[k];
{ Output newly nonzero coefficient }
block^[pos] := JCOEF (s);
{ Remember its position in case we have to suspend }
newnz_pos[num_newnz] := pos;
Inc(num_newnz);
end;
Inc(k);
end;
end;
if (EOBRUN > 0) then
begin
{ Scan any remaining coefficient positions after the end-of-band
(the last newly nonzero coefficient, if any). Append a correction
bit to each already-nonzero coefficient. A correction bit is 1
if the absolute value of the coefficient must be increased. }
while (k <= Se) do
begin
thiscoef := @(block^[jpeg_natural_order[k]]);
if (thiscoef^ <> 0) then
begin
{CHECK_BIT_BUFFER(br_state, 1, goto undoit);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then
goto undoit;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{if (GET_BITS(1)) then}
Dec(bits_left);
if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then
begin
if ((thiscoef^ and p1) = 0) then
begin { do nothing if already changed it }
if (thiscoef^ >= 0) then
Inc(thiscoef^, p1)
else
Inc(thiscoef^, m1);
end;
end;
end;
Inc(k);
end;
{ Count one block completed in EOB run }
Dec(EOBRUN);
end;
{ Completed MCU, so update state }
{BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);}
cinfo^.src^.next_input_byte := br_state.next_input_byte;
cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer;
entropy^.bitstate.get_buffer := get_buffer;
entropy^.bitstate.bits_left := bits_left;
entropy^.saved.EOBRUN := EOBRUN; { only part of saved state we care about }
end;
{ Account for restart interval (no-op if not using restarts) }
Dec(entropy^.restarts_to_go);
decode_mcu_AC_refine := TRUE;
exit;
undoit:
{ Re-zero any output coefficients that we made newly nonzero }
while (num_newnz > 0) do
begin
Dec(num_newnz);
block^[newnz_pos[num_newnz]] := 0;
end;
decode_mcu_AC_refine := FALSE;
end;
{ Module initialization routine for progressive Huffman entropy decoding. }
{GLOBAL}
procedure jinit_phuff_decoder (cinfo : j_decompress_ptr);
var
entropy : phuff_entropy_ptr;
coef_bit_ptr : int_ptr;
ci, i : int;
begin
entropy := phuff_entropy_ptr(
cinfo^.mem^.alloc_small (j_common_ptr (cinfo), JPOOL_IMAGE,
SIZEOF(phuff_entropy_decoder)) );
cinfo^.entropy := jpeg_entropy_decoder_ptr (entropy);
entropy^.pub.start_pass := start_pass_phuff_decoder;
{ Mark derived tables unallocated }
for i := 0 to pred(NUM_HUFF_TBLS) do
begin
entropy^.derived_tbls[i] := NIL;
end;
{ Create progression status table }
cinfo^.coef_bits := coef_bits_ptrrow (
cinfo^.mem^.alloc_small ( j_common_ptr (cinfo), JPOOL_IMAGE,
cinfo^.num_components*DCTSIZE2*SIZEOF(int)) );
coef_bit_ptr := @cinfo^.coef_bits^[0][0];
for ci := 0 to pred(cinfo^.num_components) do
for i := 0 to pred(DCTSIZE2) do
begin
coef_bit_ptr^ := -1;
Inc(coef_bit_ptr);
end;
end;
end.