CentrED/Imaging/JpegLib/imjdmaster.pas

680 lines
22 KiB
Plaintext

unit imjdmaster;
{ This file contains master control logic for the JPEG decompressor.
These routines are concerned with selecting the modules to be executed
and with determining the number of passes and the work to be done in each
pass. }
{ Original: jdmaster.c ; Copyright (C) 1991-1998, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjutils,
imjerror,
imjdeferr,
imjdcolor, imjdsample, imjdpostct, imjddctmgr, imjdphuff,
imjdhuff, imjdcoefct, imjdmainct,
{$ifdef QUANT_1PASS_SUPPORTED}
imjquant1,
{$endif}
{$ifdef QUANT_2PASS_SUPPORTED}
imjquant2,
{$endif}
{$ifdef UPSAMPLE_MERGING_SUPPORTED}
imjdmerge,
{$endif}
imjpeglib;
{ Compute output image dimensions and related values.
NOTE: this is exported for possible use by application.
Hence it mustn't do anything that can't be done twice.
Also note that it may be called before the master module is initialized! }
{GLOBAL}
procedure jpeg_calc_output_dimensions (cinfo : j_decompress_ptr);
{ Do computations that are needed before master selection phase }
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{GLOBAL}
procedure jpeg_new_colormap (cinfo : j_decompress_ptr);
{$endif}
{ Initialize master decompression control and select active modules.
This is performed at the start of jpeg_start_decompress. }
{GLOBAL}
procedure jinit_master_decompress (cinfo : j_decompress_ptr);
implementation
{ Private state }
type
my_master_ptr = ^my_decomp_master;
my_decomp_master = record
pub : jpeg_decomp_master; { public fields }
pass_number : int; { # of passes completed }
using_merged_upsample : boolean; { TRUE if using merged upsample/cconvert }
{ Saved references to initialized quantizer modules,
in case we need to switch modes. }
quantizer_1pass : jpeg_color_quantizer_ptr;
quantizer_2pass : jpeg_color_quantizer_ptr;
end;
{ Determine whether merged upsample/color conversion should be used.
CRUCIAL: this must match the actual capabilities of jdmerge.c! }
{LOCAL}
function use_merged_upsample (cinfo : j_decompress_ptr) : boolean;
var
compptr : jpeg_component_info_list_ptr;
begin
compptr := cinfo^.comp_info;
{$ifdef UPSAMPLE_MERGING_SUPPORTED}
{ Merging is the equivalent of plain box-filter upsampling }
if (cinfo^.do_fancy_upsampling) or (cinfo^.CCIR601_sampling) then
begin
use_merged_upsample := FALSE;
exit;
end;
{ jdmerge.c only supports YCC=>RGB color conversion }
if (cinfo^.jpeg_color_space <> JCS_YCbCr) or (cinfo^.num_components <> 3)
or (cinfo^.out_color_space <> JCS_RGB)
or (cinfo^.out_color_components <> RGB_PIXELSIZE) then
begin
use_merged_upsample := FALSE;
exit;
end;
{ and it only handles 2h1v or 2h2v sampling ratios }
if (compptr^[0].h_samp_factor <> 2) or
(compptr^[1].h_samp_factor <> 1) or
(compptr^[2].h_samp_factor <> 1) or
(compptr^[0].v_samp_factor > 2) or
(compptr^[1].v_samp_factor <> 1) or
(compptr^[2].v_samp_factor <> 1) then
begin
use_merged_upsample := FALSE;
exit;
end;
{ furthermore, it doesn't work if we've scaled the IDCTs differently }
if (compptr^[0].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) or
(compptr^[1].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) or
(compptr^[2].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) then
begin
use_merged_upsample := FALSE;
exit;
end;
{ ??? also need to test for upsample-time rescaling, when & if supported }
use_merged_upsample := TRUE; { by golly, it'll work... }
{$else}
use_merged_upsample := FALSE;
{$endif}
end;
{ Compute output image dimensions and related values.
NOTE: this is exported for possible use by application.
Hence it mustn't do anything that can't be done twice.
Also note that it may be called before the master module is initialized! }
{GLOBAL}
procedure jpeg_calc_output_dimensions (cinfo : j_decompress_ptr);
{ Do computations that are needed before master selection phase }
{$ifdef IDCT_SCALING_SUPPORTED}
var
ci : int;
compptr : jpeg_component_info_ptr;
{$endif}
var
ssize : int;
begin
{ Prevent application from calling me at wrong times }
if (cinfo^.global_state <> DSTATE_READY) then
ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state);
{$ifdef IDCT_SCALING_SUPPORTED}
{ Compute actual output image dimensions and DCT scaling choices. }
if (cinfo^.scale_num * 8 <= cinfo^.scale_denom) then
begin
{ Provide 1/8 scaling }
cinfo^.output_width := JDIMENSION (
jdiv_round_up( long(cinfo^.image_width), long(8)) );
cinfo^.output_height := JDIMENSION (
jdiv_round_up( long(cinfo^.image_height), long(8)) );
cinfo^.min_DCT_scaled_size := 1;
end
else
if (cinfo^.scale_num * 4 <= cinfo^.scale_denom) then
begin
{ Provide 1/4 scaling }
cinfo^.output_width := JDIMENSION (
jdiv_round_up( long (cinfo^.image_width), long(4)) );
cinfo^.output_height := JDIMENSION (
jdiv_round_up( long (cinfo^.image_height), long(4)) );
cinfo^.min_DCT_scaled_size := 2;
end
else
if (cinfo^.scale_num * 2 <= cinfo^.scale_denom) then
begin
{ Provide 1/2 scaling }
cinfo^.output_width := JDIMENSION (
jdiv_round_up( long(cinfo^.image_width), long(2)) );
cinfo^.output_height := JDIMENSION (
jdiv_round_up( long(cinfo^.image_height), long(2)) );
cinfo^.min_DCT_scaled_size := 4;
end
else
begin
{ Provide 1/1 scaling }
cinfo^.output_width := cinfo^.image_width;
cinfo^.output_height := cinfo^.image_height;
cinfo^.min_DCT_scaled_size := DCTSIZE;
end;
{ In selecting the actual DCT scaling for each component, we try to
scale up the chroma components via IDCT scaling rather than upsampling.
This saves time if the upsampler gets to use 1:1 scaling.
Note this code assumes that the supported DCT scalings are powers of 2. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
ssize := cinfo^.min_DCT_scaled_size;
while (ssize < DCTSIZE) and
((compptr^.h_samp_factor * ssize * 2 <=
cinfo^.max_h_samp_factor * cinfo^.min_DCT_scaled_size) and
(compptr^.v_samp_factor * ssize * 2 <=
cinfo^.max_v_samp_factor * cinfo^.min_DCT_scaled_size)) do
begin
ssize := ssize * 2;
end;
compptr^.DCT_scaled_size := ssize;
Inc(compptr);
end;
{ Recompute downsampled dimensions of components;
application needs to know these if using raw downsampled data. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
{ Size in samples, after IDCT scaling }
compptr^.downsampled_width := JDIMENSION (
jdiv_round_up(long (cinfo^.image_width) *
long (compptr^.h_samp_factor * compptr^.DCT_scaled_size),
long (cinfo^.max_h_samp_factor * DCTSIZE)) );
compptr^.downsampled_height := JDIMENSION (
jdiv_round_up(long (cinfo^.image_height) *
long (compptr^.v_samp_factor * compptr^.DCT_scaled_size),
long (cinfo^.max_v_samp_factor * DCTSIZE)) );
Inc(compptr);
end;
{$else} { !IDCT_SCALING_SUPPORTED }
{ Hardwire it to "no scaling" }
cinfo^.output_width := cinfo^.image_width;
cinfo^.output_height := cinfo^.image_height;
{ jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
and has computed unscaled downsampled_width and downsampled_height. }
{$endif} { IDCT_SCALING_SUPPORTED }
{ Report number of components in selected colorspace. }
{ Probably this should be in the color conversion module... }
case (cinfo^.out_color_space) of
JCS_GRAYSCALE:
cinfo^.out_color_components := 1;
{$ifndef RGB_PIXELSIZE_IS_3}
JCS_RGB:
cinfo^.out_color_components := RGB_PIXELSIZE;
{$else}
JCS_RGB,
{$endif} { else share code with YCbCr }
JCS_YCbCr:
cinfo^.out_color_components := 3;
JCS_CMYK,
JCS_YCCK:
cinfo^.out_color_components := 4;
else { else must be same colorspace as in file }
cinfo^.out_color_components := cinfo^.num_components;
end;
if (cinfo^.quantize_colors) then
cinfo^.output_components := 1
else
cinfo^.output_components := cinfo^.out_color_components;
{ See if upsampler will want to emit more than one row at a time }
if (use_merged_upsample(cinfo)) then
cinfo^.rec_outbuf_height := cinfo^.max_v_samp_factor
else
cinfo^.rec_outbuf_height := 1;
end;
{ Several decompression processes need to range-limit values to the range
0..MAXJSAMPLE; the input value may fall somewhat outside this range
due to noise introduced by quantization, roundoff error, etc. These
processes are inner loops and need to be as fast as possible. On most
machines, particularly CPUs with pipelines or instruction prefetch,
a (subscript-check-less) C table lookup
x := sample_range_limit[x];
is faster than explicit tests
if (x < 0) x := 0;
else if (x > MAXJSAMPLE) x := MAXJSAMPLE;
These processes all use a common table prepared by the routine below.
For most steps we can mathematically guarantee that the initial value
of x is within MAXJSAMPLE+1 of the legal range, so a table running from
-(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
limiting step (just after the IDCT), a wildly out-of-range value is
possible if the input data is corrupt. To avoid any chance of indexing
off the end of memory and getting a bad-pointer trap, we perform the
post-IDCT limiting thus:
x := range_limit[x & MASK];
where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
samples. Under normal circumstances this is more than enough range and
a correct output will be generated; with bogus input data the mask will
cause wraparound, and we will safely generate a bogus-but-in-range output.
For the post-IDCT step, we want to convert the data from signed to unsigned
representation by adding CENTERJSAMPLE at the same time that we limit it.
So the post-IDCT limiting table ends up looking like this:
CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
0,1,...,CENTERJSAMPLE-1
Negative inputs select values from the upper half of the table after
masking.
We can save some space by overlapping the start of the post-IDCT table
with the simpler range limiting table. The post-IDCT table begins at
sample_range_limit + CENTERJSAMPLE.
Note that the table is allocated in near data space on PCs; it's small
enough and used often enough to justify this. }
{LOCAL}
procedure prepare_range_limit_table (cinfo : j_decompress_ptr);
{ Allocate and fill in the sample_range_limit table }
var
table : range_limit_table_ptr;
idct_table : JSAMPROW;
i : int;
begin
table := range_limit_table_ptr (
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)) );
{ First segment of "simple" table: limit[x] := 0 for x < 0 }
MEMZERO(table, (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
cinfo^.sample_range_limit := (table);
{ allow negative subscripts of simple table }
{ is noop, handled via type definition (Nomssi) }
{ Main part of "simple" table: limit[x] := x }
for i := 0 to MAXJSAMPLE do
table^[i] := JSAMPLE (i);
idct_table := JSAMPROW(@ table^[CENTERJSAMPLE]);
{ Point to where post-IDCT table starts }
{ End of simple table, rest of first half of post-IDCT table }
for i := CENTERJSAMPLE to pred(2*(MAXJSAMPLE+1)) do
idct_table^[i] := MAXJSAMPLE;
{ Second half of post-IDCT table }
MEMZERO(@(idct_table^[2 * (MAXJSAMPLE+1)]),
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
MEMCOPY(@(idct_table^[(4 * (MAXJSAMPLE+1) - CENTERJSAMPLE)]),
@cinfo^.sample_range_limit^[0], CENTERJSAMPLE * SIZEOF(JSAMPLE));
end;
{ Master selection of decompression modules.
This is done once at jpeg_start_decompress time. We determine
which modules will be used and give them appropriate initialization calls.
We also initialize the decompressor input side to begin consuming data.
Since jpeg_read_header has finished, we know what is in the SOF
and (first) SOS markers. We also have all the application parameter
settings. }
{LOCAL}
procedure master_selection (cinfo : j_decompress_ptr);
var
master : my_master_ptr;
use_c_buffer : boolean;
samplesperrow : long;
jd_samplesperrow : JDIMENSION;
var
nscans : int;
begin
master := my_master_ptr (cinfo^.master);
{ Initialize dimensions and other stuff }
jpeg_calc_output_dimensions(cinfo);
prepare_range_limit_table(cinfo);
{ Width of an output scanline must be representable as JDIMENSION. }
samplesperrow := long(cinfo^.output_width) * long (cinfo^.out_color_components);
jd_samplesperrow := JDIMENSION (samplesperrow);
if (long(jd_samplesperrow) <> samplesperrow) then
ERREXIT(j_common_ptr(cinfo), JERR_WIDTH_OVERFLOW);
{ Initialize my private state }
master^.pass_number := 0;
master^.using_merged_upsample := use_merged_upsample(cinfo);
{ Color quantizer selection }
master^.quantizer_1pass := NIL;
master^.quantizer_2pass := NIL;
{ No mode changes if not using buffered-image mode. }
if (not cinfo^.quantize_colors) or (not cinfo^.buffered_image) then
begin
cinfo^.enable_1pass_quant := FALSE;
cinfo^.enable_external_quant := FALSE;
cinfo^.enable_2pass_quant := FALSE;
end;
if (cinfo^.quantize_colors) then
begin
if (cinfo^.raw_data_out) then
ERREXIT(j_common_ptr(cinfo), JERR_NOTIMPL);
{ 2-pass quantizer only works in 3-component color space. }
if (cinfo^.out_color_components <> 3) then
begin
cinfo^.enable_1pass_quant := TRUE;
cinfo^.enable_external_quant := FALSE;
cinfo^.enable_2pass_quant := FALSE;
cinfo^.colormap := NIL;
end
else
if (cinfo^.colormap <> NIL) then
begin
cinfo^.enable_external_quant := TRUE;
end
else
if (cinfo^.two_pass_quantize) then
begin
cinfo^.enable_2pass_quant := TRUE;
end
else
begin
cinfo^.enable_1pass_quant := TRUE;
end;
if (cinfo^.enable_1pass_quant) then
begin
{$ifdef QUANT_1PASS_SUPPORTED}
jinit_1pass_quantizer(cinfo);
master^.quantizer_1pass := cinfo^.cquantize;
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end;
{ We use the 2-pass code to map to external colormaps. }
if (cinfo^.enable_2pass_quant) or (cinfo^.enable_external_quant) then
begin
{$ifdef QUANT_2PASS_SUPPORTED}
jinit_2pass_quantizer(cinfo);
master^.quantizer_2pass := cinfo^.cquantize;
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end;
{ If both quantizers are initialized, the 2-pass one is left active;
this is necessary for starting with quantization to an external map. }
end;
{ Post-processing: in particular, color conversion first }
if (not cinfo^.raw_data_out) then
begin
if (master^.using_merged_upsample) then
begin
{$ifdef UPSAMPLE_MERGING_SUPPORTED}
jinit_merged_upsampler(cinfo); { does color conversion too }
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end
else
begin
jinit_color_deconverter(cinfo);
jinit_upsampler(cinfo);
end;
jinit_d_post_controller(cinfo, cinfo^.enable_2pass_quant);
end;
{ Inverse DCT }
jinit_inverse_dct(cinfo);
{ Entropy decoding: either Huffman or arithmetic coding. }
if (cinfo^.arith_code) then
begin
ERREXIT(j_common_ptr(cinfo), JERR_ARITH_NOTIMPL);
end
else
begin
if (cinfo^.progressive_mode) then
begin
{$ifdef D_PROGRESSIVE_SUPPORTED}
jinit_phuff_decoder(cinfo);
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end
else
jinit_huff_decoder(cinfo);
end;
{ Initialize principal buffer controllers. }
use_c_buffer := cinfo^.inputctl^.has_multiple_scans or cinfo^.buffered_image;
jinit_d_coef_controller(cinfo, use_c_buffer);
if (not cinfo^.raw_data_out) then
jinit_d_main_controller(cinfo, FALSE { never need full buffer here });
{ We can now tell the memory manager to allocate virtual arrays. }
cinfo^.mem^.realize_virt_arrays (j_common_ptr(cinfo));
{ Initialize input side of decompressor to consume first scan. }
cinfo^.inputctl^.start_input_pass (cinfo);
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ If jpeg_start_decompress will read the whole file, initialize
progress monitoring appropriately. The input step is counted
as one pass. }
if (cinfo^.progress <> NIL) and (not cinfo^.buffered_image) and
(cinfo^.inputctl^.has_multiple_scans) then
begin
{ Estimate number of scans to set pass_limit. }
if (cinfo^.progressive_mode) then
begin
{ Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. }
nscans := 2 + 3 * cinfo^.num_components;
end
else
begin
{ For a nonprogressive multiscan file, estimate 1 scan per component. }
nscans := cinfo^.num_components;
end;
cinfo^.progress^.pass_counter := Long(0);
cinfo^.progress^.pass_limit := long (cinfo^.total_iMCU_rows) * nscans;
cinfo^.progress^.completed_passes := 0;
if cinfo^.enable_2pass_quant then
cinfo^.progress^.total_passes := 3
else
cinfo^.progress^.total_passes := 2;
{ Count the input pass as done }
Inc(master^.pass_number);
end;
{$endif} { D_MULTISCAN_FILES_SUPPORTED }
end;
{ Per-pass setup.
This is called at the beginning of each output pass. We determine which
modules will be active during this pass and give them appropriate
start_pass calls. We also set is_dummy_pass to indicate whether this
is a "real" output pass or a dummy pass for color quantization.
(In the latter case, jdapistd.c will crank the pass to completion.) }
{METHODDEF}
procedure prepare_for_output_pass (cinfo : j_decompress_ptr);
var
master : my_master_ptr;
begin
master := my_master_ptr (cinfo^.master);
if (master^.pub.is_dummy_pass) then
begin
{$ifdef QUANT_2PASS_SUPPORTED}
{ Final pass of 2-pass quantization }
master^.pub.is_dummy_pass := FALSE;
cinfo^.cquantize^.start_pass (cinfo, FALSE);
cinfo^.post^.start_pass (cinfo, JBUF_CRANK_DEST);
cinfo^.main^.start_pass (cinfo, JBUF_CRANK_DEST);
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif} { QUANT_2PASS_SUPPORTED }
end
else
begin
if (cinfo^.quantize_colors) and (cinfo^.colormap = NIL) then
begin
{ Select new quantization method }
if (cinfo^.two_pass_quantize) and (cinfo^.enable_2pass_quant) then
begin
cinfo^.cquantize := master^.quantizer_2pass;
master^.pub.is_dummy_pass := TRUE;
end
else
if (cinfo^.enable_1pass_quant) then
begin
cinfo^.cquantize := master^.quantizer_1pass;
end
else
begin
ERREXIT(j_common_ptr(cinfo), JERR_MODE_CHANGE);
end;
end;
cinfo^.idct^.start_pass (cinfo);
cinfo^.coef^.start_output_pass (cinfo);
if (not cinfo^.raw_data_out) then
begin
if (not master^.using_merged_upsample) then
cinfo^.cconvert^.start_pass (cinfo);
cinfo^.upsample^.start_pass (cinfo);
if (cinfo^.quantize_colors) then
cinfo^.cquantize^.start_pass (cinfo, master^.pub.is_dummy_pass);
if master^.pub.is_dummy_pass then
cinfo^.post^.start_pass (cinfo, JBUF_SAVE_AND_PASS)
else
cinfo^.post^.start_pass (cinfo, JBUF_PASS_THRU);
cinfo^.main^.start_pass (cinfo, JBUF_PASS_THRU);
end;
end;
{ Set up progress monitor's pass info if present }
if (cinfo^.progress <> NIL) then
begin
cinfo^.progress^.completed_passes := master^.pass_number;
if master^.pub.is_dummy_pass then
cinfo^.progress^.total_passes := master^.pass_number + 2
else
cinfo^.progress^.total_passes := master^.pass_number + 1;
{ In buffered-image mode, we assume one more output pass if EOI not
yet reached, but no more passes if EOI has been reached. }
if (cinfo^.buffered_image) and (not cinfo^.inputctl^.eoi_reached) then
begin
if cinfo^.enable_2pass_quant then
Inc(cinfo^.progress^.total_passes, 2)
else
Inc(cinfo^.progress^.total_passes, 1);
end;
end;
end;
{ Finish up at end of an output pass. }
{METHODDEF}
procedure finish_output_pass (cinfo : j_decompress_ptr);
var
master : my_master_ptr;
begin
master := my_master_ptr (cinfo^.master);
if (cinfo^.quantize_colors) then
cinfo^.cquantize^.finish_pass (cinfo);
Inc(master^.pass_number);
end;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ Switch to a new external colormap between output passes. }
{GLOBAL}
procedure jpeg_new_colormap (cinfo : j_decompress_ptr);
var
master : my_master_ptr;
begin
master := my_master_ptr (cinfo^.master);
{ Prevent application from calling me at wrong times }
if (cinfo^.global_state <> DSTATE_BUFIMAGE) then
ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state);
if (cinfo^.quantize_colors) and (cinfo^.enable_external_quant) and
(cinfo^.colormap <> NIL) then
begin
{ Select 2-pass quantizer for external colormap use }
cinfo^.cquantize := master^.quantizer_2pass;
{ Notify quantizer of colormap change }
cinfo^.cquantize^.new_color_map (cinfo);
master^.pub.is_dummy_pass := FALSE; { just in case }
end
else
ERREXIT(j_common_ptr(cinfo), JERR_MODE_CHANGE);
end;
{$endif} { D_MULTISCAN_FILES_SUPPORTED }
{ Initialize master decompression control and select active modules.
This is performed at the start of jpeg_start_decompress. }
{GLOBAL}
procedure jinit_master_decompress (cinfo : j_decompress_ptr);
var
master : my_master_ptr;
begin
master := my_master_ptr (
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(my_decomp_master)) );
cinfo^.master := jpeg_decomp_master_ptr(master);
master^.pub.prepare_for_output_pass := prepare_for_output_pass;
master^.pub.finish_output_pass := finish_output_pass;
master^.pub.is_dummy_pass := FALSE;
master_selection(cinfo);
end;
end.