177 lines
5.5 KiB
Plaintext
177 lines
5.5 KiB
Plaintext
unit imjfdctflt;
|
|
|
|
{$N+}
|
|
{ This file contains a floating-point implementation of the
|
|
forward DCT (Discrete Cosine Transform).
|
|
|
|
This implementation should be more accurate than either of the integer
|
|
DCT implementations. However, it may not give the same results on all
|
|
machines because of differences in roundoff behavior. Speed will depend
|
|
on the hardware's floating point capacity.
|
|
|
|
A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
|
on each column. Direct algorithms are also available, but they are
|
|
much more complex and seem not to be any faster when reduced to code.
|
|
|
|
This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
|
scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
|
Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
|
JPEG textbook (see REFERENCES section in file README). The following code
|
|
is based directly on figure 4-8 in P&M.
|
|
While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
|
possible to arrange the computation so that many of the multiplies are
|
|
simple scalings of the final outputs. These multiplies can then be
|
|
folded into the multiplications or divisions by the JPEG quantization
|
|
table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
|
to be done in the DCT itself.
|
|
The primary disadvantage of this method is that with a fixed-point
|
|
implementation, accuracy is lost due to imprecise representation of the
|
|
scaled quantization values. However, that problem does not arise if
|
|
we use floating point arithmetic. }
|
|
|
|
{ Original : jfdctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
|
|
|
|
interface
|
|
|
|
{$I imjconfig.inc}
|
|
|
|
uses
|
|
imjmorecfg,
|
|
imjinclude,
|
|
imjpeglib,
|
|
imjdct; { Private declarations for DCT subsystem }
|
|
|
|
|
|
{ Perform the forward DCT on one block of samples.}
|
|
|
|
{GLOBAL}
|
|
procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
|
|
|
|
implementation
|
|
|
|
{ This module is specialized to the case DCTSIZE = 8. }
|
|
|
|
{$ifndef DCTSIZE_IS_8}
|
|
Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
|
|
{$endif}
|
|
|
|
|
|
{ Perform the forward DCT on one block of samples.}
|
|
|
|
{GLOBAL}
|
|
procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
|
|
type
|
|
PWorkspace = ^TWorkspace;
|
|
TWorkspace = array [0..DCTSIZE2-1] of FAST_FLOAT;
|
|
var
|
|
tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT;
|
|
tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT;
|
|
z1, z2, z3, z4, z5, z11, z13 : FAST_FLOAT;
|
|
dataptr : PWorkspace;
|
|
ctr : int;
|
|
begin
|
|
{ Pass 1: process rows. }
|
|
|
|
dataptr := PWorkspace(@data);
|
|
for ctr := DCTSIZE-1 downto 0 do
|
|
begin
|
|
tmp0 := dataptr^[0] + dataptr^[7];
|
|
tmp7 := dataptr^[0] - dataptr^[7];
|
|
tmp1 := dataptr^[1] + dataptr^[6];
|
|
tmp6 := dataptr^[1] - dataptr^[6];
|
|
tmp2 := dataptr^[2] + dataptr^[5];
|
|
tmp5 := dataptr^[2] - dataptr^[5];
|
|
tmp3 := dataptr^[3] + dataptr^[4];
|
|
tmp4 := dataptr^[3] - dataptr^[4];
|
|
|
|
{ Even part }
|
|
|
|
tmp10 := tmp0 + tmp3; { phase 2 }
|
|
tmp13 := tmp0 - tmp3;
|
|
tmp11 := tmp1 + tmp2;
|
|
tmp12 := tmp1 - tmp2;
|
|
|
|
dataptr^[0] := tmp10 + tmp11; { phase 3 }
|
|
dataptr^[4] := tmp10 - tmp11;
|
|
|
|
z1 := (tmp12 + tmp13) * ({FAST_FLOAT}(0.707106781)); { c4 }
|
|
dataptr^[2] := tmp13 + z1; { phase 5 }
|
|
dataptr^[6] := tmp13 - z1;
|
|
|
|
{ Odd part }
|
|
|
|
tmp10 := tmp4 + tmp5; { phase 2 }
|
|
tmp11 := tmp5 + tmp6;
|
|
tmp12 := tmp6 + tmp7;
|
|
|
|
{ The rotator is modified from fig 4-8 to avoid extra negations. }
|
|
z5 := (tmp10 - tmp12) * ( {FAST_FLOAT}(0.382683433)); { c6 }
|
|
z2 := {FAST_FLOAT}(0.541196100) * tmp10 + z5; { c2-c6 }
|
|
z4 := {FAST_FLOAT}(1.306562965) * tmp12 + z5; { c2+c6 }
|
|
z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
|
|
|
|
z11 := tmp7 + z3; { phase 5 }
|
|
z13 := tmp7 - z3;
|
|
|
|
dataptr^[5] := z13 + z2; { phase 6 }
|
|
dataptr^[3] := z13 - z2;
|
|
dataptr^[1] := z11 + z4;
|
|
dataptr^[7] := z11 - z4;
|
|
|
|
Inc(FAST_FLOAT_PTR(dataptr), DCTSIZE); { advance pointer to next row }
|
|
end;
|
|
|
|
{ Pass 2: process columns. }
|
|
|
|
dataptr := PWorkspace(@data);
|
|
for ctr := DCTSIZE-1 downto 0 do
|
|
begin
|
|
tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
|
|
tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
|
|
tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
|
|
tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
|
|
tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
|
|
tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
|
|
tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
|
|
tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
|
|
|
|
{ Even part }
|
|
|
|
tmp10 := tmp0 + tmp3; { phase 2 }
|
|
tmp13 := tmp0 - tmp3;
|
|
tmp11 := tmp1 + tmp2;
|
|
tmp12 := tmp1 - tmp2;
|
|
|
|
dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
|
|
dataptr^[DCTSIZE*4] := tmp10 - tmp11;
|
|
|
|
z1 := (tmp12 + tmp13) * {FAST_FLOAT} (0.707106781); { c4 }
|
|
dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
|
|
dataptr^[DCTSIZE*6] := tmp13 - z1;
|
|
|
|
{ Odd part }
|
|
|
|
tmp10 := tmp4 + tmp5; { phase 2 }
|
|
tmp11 := tmp5 + tmp6;
|
|
tmp12 := tmp6 + tmp7;
|
|
|
|
{ The rotator is modified from fig 4-8 to avoid extra negations. }
|
|
z5 := (tmp10 - tmp12) * {FAST_FLOAT} (0.382683433); { c6 }
|
|
z2 := {FAST_FLOAT} (0.541196100) * tmp10 + z5; { c2-c6 }
|
|
z4 := {FAST_FLOAT} (1.306562965) * tmp12 + z5; { c2+c6 }
|
|
z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
|
|
|
|
z11 := tmp7 + z3; { phase 5 }
|
|
z13 := tmp7 - z3;
|
|
|
|
dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
|
|
dataptr^[DCTSIZE*3] := z13 - z2;
|
|
dataptr^[DCTSIZE*1] := z11 + z4;
|
|
dataptr^[DCTSIZE*7] := z11 - z4;
|
|
|
|
Inc(FAST_FLOAT_PTR(dataptr)); { advance pointer to next column }
|
|
end;
|
|
end;
|
|
|
|
end.
|