CentrED/Imaging/JpegLib/imjcsample.pas

632 lines
22 KiB
Plaintext
Raw Normal View History

2022-05-08 10:47:53 +02:00
unit imjcsample;
{ This file contains downsampling routines.
Downsampling input data is counted in "row groups". A row group
is defined to be max_v_samp_factor pixel rows of each component,
from which the downsampler produces v_samp_factor sample rows.
A single row group is processed in each call to the downsampler module.
The downsampler is responsible for edge-expansion of its output data
to fill an integral number of DCT blocks horizontally. The source buffer
may be modified if it is helpful for this purpose (the source buffer is
allocated wide enough to correspond to the desired output width).
The caller (the prep controller) is responsible for vertical padding.
The downsampler may request "context rows" by setting need_context_rows
during startup. In this case, the input arrays will contain at least
one row group's worth of pixels above and below the passed-in data;
the caller will create dummy rows at image top and bottom by replicating
the first or last real pixel row.
An excellent reference for image resampling is
Digital Image Warping, George Wolberg, 1990.
Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
The downsampling algorithm used here is a simple average of the source
pixels covered by the output pixel. The hi-falutin sampling literature
refers to this as a "box filter". In general the characteristics of a box
filter are not very good, but for the specific cases we normally use (1:1
and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
nearly so bad. If you intend to use other sampling ratios, you'd be well
advised to improve this code.
A simple input-smoothing capability is provided. This is mainly intended
for cleaning up color-dithered GIF input files (if you find it inadequate,
we suggest using an external filtering program such as pnmconvol). When
enabled, each input pixel P is replaced by a weighted sum of itself and its
eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
where SF := (smoothing_factor / 1024).
Currently, smoothing is only supported for 2h2v sampling factors. }
{ Original: jcsample.c ; Copyright (C) 1991-1996, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjutils,
imjdeferr,
imjerror,
imjpeglib;
{ Module initialization routine for downsampling.
Note that we must select a routine for each component. }
{GLOBAL}
procedure jinit_downsampler (cinfo : j_compress_ptr);
implementation
{ Pointer to routine to downsample a single component }
type
downsample1_ptr = procedure(cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
{ Private subobject }
type
my_downsample_ptr = ^my_downsampler;
my_downsampler = record
pub : jpeg_downsampler; { public fields }
{ Downsampling method pointers, one per component }
methods : array[0..MAX_COMPONENTS-1] of downsample1_ptr;
end;
{ Initialize for a downsampling pass. }
{METHODDEF}
procedure start_pass_downsample (cinfo : j_compress_ptr);
begin
{ no work for now }
end;
{ Expand a component horizontally from width input_cols to width output_cols,
by duplicating the rightmost samples. }
{LOCAL}
procedure expand_right_edge (image_data : JSAMPARRAY;
num_rows : int;
input_cols : JDIMENSION;
output_cols : JDIMENSION);
var
{register} ptr : JSAMPLE_PTR;
{register} pixval : JSAMPLE;
{register} count : int;
row : int;
numcols : int;
begin
numcols := int (output_cols - input_cols);
if (numcols > 0) then
begin
for row := 0 to pred(num_rows) do
begin
ptr := JSAMPLE_PTR(@(image_data^[row]^[input_cols-1]));
pixval := ptr^; { don't need GETJSAMPLE() here }
for count := pred(numcols) downto 0 do
begin
Inc(ptr);
ptr^ := pixval;
end;
end;
end;
end;
{ Do downsampling for a whole row group (all components).
In this version we simply downsample each component independently. }
{METHODDEF}
procedure sep_downsample (cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE;
in_row_index : JDIMENSION;
output_buf : JSAMPIMAGE;
out_row_group_index : JDIMENSION);
var
downsample : my_downsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
in_ptr, out_ptr : JSAMPARRAY;
begin
downsample := my_downsample_ptr (cinfo^.downsample);
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
in_ptr := JSAMPARRAY(@ input_buf^[ci]^[in_row_index]);
out_ptr := JSAMPARRAY(@ output_buf^[ci]^
[out_row_group_index * JDIMENSION(compptr^.v_samp_factor)]);
downsample^.methods[ci] (cinfo, compptr, in_ptr, out_ptr);
Inc(compptr);
end;
end;
{ Downsample pixel values of a single component.
One row group is processed per call.
This version handles arbitrary integral sampling ratios, without smoothing.
Note that this version is not actually used for customary sampling ratios. }
{METHODDEF}
procedure int_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
var
inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v : int;
outcol, outcol_h : JDIMENSION; { outcol_h = outcol*h_expand }
output_cols : JDIMENSION;
inptr,
outptr : JSAMPLE_PTR;
outvalue : INT32;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
h_expand := cinfo^.max_h_samp_factor div compptr^.h_samp_factor;
v_expand := cinfo^.max_v_samp_factor div compptr^.v_samp_factor;
numpix := h_expand * v_expand;
numpix2 := numpix div 2;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * JDIMENSION(h_expand));
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
outcol_h := 0;
for outcol := 0 to pred(output_cols) do
begin
outvalue := 0;
for v := 0 to pred(v_expand) do
begin
inptr := @(input_data^[inrow+v]^[outcol_h]);
for h := 0 to pred(h_expand) do
begin
Inc(outvalue, INT32 (GETJSAMPLE(inptr^)) );
Inc(inptr);
end;
end;
outptr^ := JSAMPLE ((outvalue + numpix2) div numpix);
Inc(outptr);
Inc(outcol_h, h_expand);
end;
Inc(inrow, v_expand);
end;
end;
{ Downsample pixel values of a single component.
This version handles the special case of a full-size component,
without smoothing. }
{METHODDEF}
procedure fullsize_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
begin
{ Copy the data }
jcopy_sample_rows(input_data, 0, output_data, 0,
cinfo^.max_v_samp_factor, cinfo^.image_width);
{ Edge-expand }
expand_right_edge(output_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, compptr^.width_in_blocks * DCTSIZE);
end;
{ Downsample pixel values of a single component.
This version handles the common case of 2:1 horizontal and 1:1 vertical,
without smoothing.
A note about the "bias" calculations: when rounding fractional values to
integer, we do not want to always round 0.5 up to the next integer.
If we did that, we'd introduce a noticeable bias towards larger values.
Instead, this code is arranged so that 0.5 will be rounded up or down at
alternate pixel locations (a simple ordered dither pattern). }
{METHODDEF}
procedure h2v1_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
var
outrow : int;
outcol : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr, outptr : JSAMPLE_PTR;
{register} bias : int;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * 2);
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr := JSAMPLE_PTR(input_data^[outrow]);
bias := 0; { bias := 0,1,0,1,... for successive samples }
for outcol := 0 to pred(output_cols) do
begin
outptr^ := JSAMPLE ((GETJSAMPLE(inptr^) +
GETJSAMPLE(JSAMPROW(inptr)^[1]) + bias) shr 1);
Inc(outptr);
bias := bias xor 1; { 0=>1, 1=>0 }
Inc(inptr, 2);
end;
end;
end;
{ Downsample pixel values of a single component.
This version handles the standard case of 2:1 horizontal and 2:1 vertical,
without smoothing. }
{METHODDEF}
procedure h2v2_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
var
inrow, outrow : int;
outcol : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr0, inptr1, outptr : JSAMPLE_PTR;
{register} bias : int;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * 2);
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr0 := JSAMPLE_PTR(input_data^[inrow]);
inptr1 := JSAMPLE_PTR(input_data^[inrow+1]);
bias := 1; { bias := 1,2,1,2,... for successive samples }
for outcol := 0 to pred(output_cols) do
begin
outptr^ := JSAMPLE ((GETJSAMPLE(inptr0^) +
GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) +
GETJSAMPLE(JSAMPROW(inptr1)^[1]) + bias) shr 2);
Inc(outptr);
bias := bias xor 3; { 1=>2, 2=>1 }
Inc(inptr0, 2);
Inc(inptr1, 2);
end;
Inc(inrow, 2);
end;
end;
{$ifdef INPUT_SMOOTHING_SUPPORTED}
{ Downsample pixel values of a single component.
This version handles the standard case of 2:1 horizontal and 2:1 vertical,
with smoothing. One row of context is required. }
{METHODDEF}
procedure h2v2_smooth_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
var
inrow, outrow : int;
colctr : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr0, inptr1, above_ptr, below_ptr, outptr : JSAMPLE_PTR;
membersum, neighsum, memberscale, neighscale : INT32;
var
prev_input_data : JSAMPARRAY;
prev_inptr0, prev_inptr1, prev_above_ptr, prev_below_ptr : JSAMPLE_PTR;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
prev_input_data := input_data;
Dec(JSAMPROW_PTR(prev_input_data));
expand_right_edge(prev_input_data, cinfo^.max_v_samp_factor + 2,
cinfo^.image_width, output_cols * 2);
{ We don't bother to form the individual "smoothed" input pixel values;
we can directly compute the output which is the average of the four
smoothed values. Each of the four member pixels contributes a fraction
(1-8*SF) to its own smoothed image and a fraction SF to each of the three
other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
output. The four corner-adjacent neighbor pixels contribute a fraction
SF to just one smoothed pixel, or SF/4 to the final output; while the
eight edge-adjacent neighbors contribute SF to each of two smoothed
pixels, or SF/2 overall. In order to use integer arithmetic, these
factors are scaled by 2^16 := 65536.
Also recall that SF := smoothing_factor / 1024. }
memberscale := 16384 - cinfo^.smoothing_factor * 80; { scaled (1-5*SF)/4 }
neighscale := cinfo^.smoothing_factor * 16; { scaled SF/4 }
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr0 := JSAMPLE_PTR(input_data^[inrow]);
inptr1 := JSAMPLE_PTR(input_data^[inrow+1]);
above_ptr := JSAMPLE_PTR(input_data^[inrow-1]);
below_ptr := JSAMPLE_PTR(input_data^[inrow+2]);
{ Special case for first column: pretend column -1 is same as column 0 }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[2]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[2]);
Inc(neighsum, neighsum);
Inc(neighsum, GETJSAMPLE(above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[2]) +
GETJSAMPLE(below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[2]) );
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
prev_inptr0 := inptr0;
prev_inptr1 := inptr1;
Inc(prev_inptr0);
Inc(prev_inptr1);
Inc(inptr0, 2);
Inc(inptr1, 2);
prev_above_ptr := above_ptr;
prev_below_ptr := below_ptr;
Inc(above_ptr, 2);
Inc(below_ptr, 2);
Inc(prev_above_ptr, 1);
Inc(prev_below_ptr, 1);
for colctr := pred(output_cols - 2) downto 0 do
begin
{ sum of pixels directly mapped to this output element }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
{ sum of edge-neighbor pixels }
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(prev_inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[2]) +
GETJSAMPLE(prev_inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[2]);
{ The edge-neighbors count twice as much as corner-neighbors }
Inc(neighsum, neighsum);
{ Add in the corner-neighbors }
Inc(neighsum, GETJSAMPLE(prev_above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[2]) +
GETJSAMPLE(prev_below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[2]) );
{ form final output scaled up by 2^16 }
membersum := membersum * memberscale + neighsum * neighscale;
{ round, descale and output it }
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
Inc(inptr0, 2);
Inc(inptr1, 2);
Inc(prev_inptr0, 2);
Inc(prev_inptr1, 2);
Inc(above_ptr, 2);
Inc(below_ptr, 2);
Inc(prev_above_ptr, 2);
Inc(prev_below_ptr, 2);
end;
{ Special case for last column }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(prev_inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(prev_inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
Inc(neighsum, neighsum);
Inc(neighsum, GETJSAMPLE(prev_above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(prev_below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[1]) );
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(inrow, 2);
end;
end;
{ Downsample pixel values of a single component.
This version handles the special case of a full-size component,
with smoothing. One row of context is required. }
{METHODDEF}
procedure fullsize_smooth_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
var
outrow : int;
colctr : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr, above_ptr, below_ptr, outptr : JSAMPLE_PTR;
membersum, neighsum, memberscale, neighscale : INT32;
colsum, lastcolsum, nextcolsum : int;
var
prev_input_data : JSAMPARRAY;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
prev_input_data := input_data;
Dec(JSAMPROW_PTR(prev_input_data));
expand_right_edge(prev_input_data, cinfo^.max_v_samp_factor + 2,
cinfo^.image_width, output_cols);
{ Each of the eight neighbor pixels contributes a fraction SF to the
smoothed pixel, while the main pixel contributes (1-8*SF). In order
to use integer arithmetic, these factors are multiplied by 2^16 := 65536.
Also recall that SF := smoothing_factor / 1024. }
memberscale := long(65536) - cinfo^.smoothing_factor * long(512); { scaled 1-8*SF }
neighscale := cinfo^.smoothing_factor * 64; { scaled SF }
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr := JSAMPLE_PTR(input_data^[outrow]);
above_ptr := JSAMPLE_PTR(input_data^[outrow-1]);
below_ptr := JSAMPLE_PTR(input_data^[outrow+1]);
{ Special case for first column }
colsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
Inc(above_ptr);
Inc(below_ptr);
membersum := GETJSAMPLE(inptr^);
Inc(inptr);
nextcolsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
neighsum := colsum + (colsum - membersum) + nextcolsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
lastcolsum := colsum; colsum := nextcolsum;
for colctr := pred(output_cols - 2) downto 0 do
begin
membersum := GETJSAMPLE(inptr^);
Inc(inptr);
Inc(above_ptr);
Inc(below_ptr);
nextcolsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
neighsum := lastcolsum + (colsum - membersum) + nextcolsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
lastcolsum := colsum; colsum := nextcolsum;
end;
{ Special case for last column }
membersum := GETJSAMPLE(inptr^);
neighsum := lastcolsum + (colsum - membersum) + colsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
end;
end;
{$endif} { INPUT_SMOOTHING_SUPPORTED }
{ Module initialization routine for downsampling.
Note that we must select a routine for each component. }
{GLOBAL}
procedure jinit_downsampler (cinfo : j_compress_ptr);
var
downsample : my_downsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
smoothok : boolean;
begin
smoothok := TRUE;
downsample := my_downsample_ptr(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(my_downsampler)) );
cinfo^.downsample := jpeg_downsampler_ptr (downsample);
downsample^.pub.start_pass := start_pass_downsample;
downsample^.pub.downsample := sep_downsample;
downsample^.pub.need_context_rows := FALSE;
if (cinfo^.CCIR601_sampling) then
ERREXIT(j_common_ptr(cinfo), JERR_CCIR601_NOTIMPL);
{ Verify we can handle the sampling factors, and set up method pointers }
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
if (compptr^.h_samp_factor = cinfo^.max_h_samp_factor) and
(compptr^.v_samp_factor = cinfo^.max_v_samp_factor) then
begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0) then
begin
downsample^.methods[ci] := fullsize_smooth_downsample;
downsample^.pub.need_context_rows := TRUE;
end
else
{$endif}
downsample^.methods[ci] := fullsize_downsample;
end
else
if (compptr^.h_samp_factor * 2 = cinfo^.max_h_samp_factor) and
(compptr^.v_samp_factor = cinfo^.max_v_samp_factor) then
begin
smoothok := FALSE;
downsample^.methods[ci] := h2v1_downsample;
end
else
if (compptr^.h_samp_factor * 2 = cinfo^.max_h_samp_factor) and
(compptr^.v_samp_factor * 2 = cinfo^.max_v_samp_factor) then
begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0) then
begin
downsample^.methods[ci] := h2v2_smooth_downsample;
downsample^.pub.need_context_rows := TRUE;
end
else
{$endif}
downsample^.methods[ci] := h2v2_downsample;
end
else
if ((cinfo^.max_h_samp_factor mod compptr^.h_samp_factor) = 0) and
((cinfo^.max_v_samp_factor mod compptr^.v_samp_factor) = 0) then
begin
smoothok := FALSE;
downsample^.methods[ci] := int_downsample;
end
else
ERREXIT(j_common_ptr(cinfo), JERR_FRACT_SAMPLE_NOTIMPL);
Inc(compptr);
end;
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0) and (not smoothok) then
TRACEMS(j_common_ptr(cinfo), 0, JTRC_SMOOTH_NOTIMPL);
{$endif}
end;
end.