441 lines
16 KiB
Plaintext
441 lines
16 KiB
Plaintext
|
unit imjidctint;
|
||
|
{$Q+}
|
||
|
|
||
|
{ This file contains a slow-but-accurate integer implementation of the
|
||
|
inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||
|
must also perform dequantization of the input coefficients.
|
||
|
|
||
|
A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||
|
on each row (or vice versa, but it's more convenient to emit a row at
|
||
|
a time). Direct algorithms are also available, but they are much more
|
||
|
complex and seem not to be any faster when reduced to code.
|
||
|
|
||
|
This implementation is based on an algorithm described in
|
||
|
C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||
|
Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||
|
Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||
|
The primary algorithm described there uses 11 multiplies and 29 adds.
|
||
|
We use their alternate method with 12 multiplies and 32 adds.
|
||
|
The advantage of this method is that no data path contains more than one
|
||
|
multiplication; this allows a very simple and accurate implementation in
|
||
|
scaled fixed-point arithmetic, with a minimal number of shifts. }
|
||
|
|
||
|
{ Original : jidctint.c ; Copyright (C) 1991-1998, Thomas G. Lane. }
|
||
|
|
||
|
|
||
|
interface
|
||
|
|
||
|
{$I imjconfig.inc}
|
||
|
|
||
|
uses
|
||
|
imjmorecfg,
|
||
|
imjinclude,
|
||
|
imjpeglib,
|
||
|
imjdct; { Private declarations for DCT subsystem }
|
||
|
|
||
|
{ Perform dequantization and inverse DCT on one block of coefficients. }
|
||
|
|
||
|
{GLOBAL}
|
||
|
procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
|
||
|
compptr : jpeg_component_info_ptr;
|
||
|
coef_block : JCOEFPTR;
|
||
|
output_buf : JSAMPARRAY;
|
||
|
output_col : JDIMENSION);
|
||
|
|
||
|
implementation
|
||
|
|
||
|
{ This module is specialized to the case DCTSIZE = 8. }
|
||
|
|
||
|
{$ifndef DCTSIZE_IS_8}
|
||
|
Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
|
||
|
{$endif}
|
||
|
|
||
|
{ The poop on this scaling stuff is as follows:
|
||
|
|
||
|
Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
||
|
larger than the true IDCT outputs. The final outputs are therefore
|
||
|
a factor of N larger than desired; since N=8 this can be cured by
|
||
|
a simple right shift at the end of the algorithm. The advantage of
|
||
|
this arrangement is that we save two multiplications per 1-D IDCT,
|
||
|
because the y0 and y4 inputs need not be divided by sqrt(N).
|
||
|
|
||
|
We have to do addition and subtraction of the integer inputs, which
|
||
|
is no problem, and multiplication by fractional constants, which is
|
||
|
a problem to do in integer arithmetic. We multiply all the constants
|
||
|
by CONST_SCALE and convert them to integer constants (thus retaining
|
||
|
CONST_BITS bits of precision in the constants). After doing a
|
||
|
multiplication we have to divide the product by CONST_SCALE, with proper
|
||
|
rounding, to produce the correct output. This division can be done
|
||
|
cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||
|
as long as possible so that partial sums can be added together with
|
||
|
full fractional precision.
|
||
|
|
||
|
The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||
|
they are represented to better-than-integral precision. These outputs
|
||
|
require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||
|
with the recommended scaling. (To scale up 12-bit sample data further, an
|
||
|
intermediate INT32 array would be needed.)
|
||
|
|
||
|
To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||
|
have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||
|
shows that the values given below are the most effective. }
|
||
|
|
||
|
{$ifdef BITS_IN_JSAMPLE_IS_8}
|
||
|
const
|
||
|
CONST_BITS = 13;
|
||
|
PASS1_BITS = 2;
|
||
|
{$else}
|
||
|
const
|
||
|
CONST_BITS = 13;
|
||
|
PASS1_BITS = 1; { lose a little precision to avoid overflow }
|
||
|
{$endif}
|
||
|
|
||
|
const
|
||
|
CONST_SCALE = (INT32(1) shl CONST_BITS);
|
||
|
|
||
|
const
|
||
|
FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446}
|
||
|
FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196}
|
||
|
FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433}
|
||
|
FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270}
|
||
|
FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373}
|
||
|
FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633}
|
||
|
FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299}
|
||
|
FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137}
|
||
|
FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069}
|
||
|
FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819}
|
||
|
FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995}
|
||
|
FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
|
||
|
|
||
|
|
||
|
|
||
|
{ Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||
|
For 8-bit samples with the recommended scaling, all the variable
|
||
|
and constant values involved are no more than 16 bits wide, so a
|
||
|
16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||
|
For 12-bit samples, a full 32-bit multiplication will be needed. }
|
||
|
|
||
|
{$ifdef BITS_IN_JSAMPLE_IS_8}
|
||
|
|
||
|
{$IFDEF BASM16}
|
||
|
{$IFNDEF WIN32}
|
||
|
{MULTIPLY16C16(var,const)}
|
||
|
function Multiply(X, Y: Integer): integer; assembler;
|
||
|
asm
|
||
|
mov ax, X
|
||
|
imul Y
|
||
|
mov al, ah
|
||
|
mov ah, dl
|
||
|
end;
|
||
|
{$ENDIF}
|
||
|
{$ENDIF}
|
||
|
|
||
|
function Multiply(X, Y: INT32): INT32;
|
||
|
begin
|
||
|
Multiply := INT32(X) * INT32(Y);
|
||
|
end;
|
||
|
|
||
|
|
||
|
{$else}
|
||
|
{#define MULTIPLY(var,const) ((var) * (const))}
|
||
|
function Multiply(X, Y: INT32): INT32;
|
||
|
begin
|
||
|
Multiply := INT32(X) * INT32(Y);
|
||
|
end;
|
||
|
{$endif}
|
||
|
|
||
|
|
||
|
{ Dequantize a coefficient by multiplying it by the multiplier-table
|
||
|
entry; produce an int result. In this module, both inputs and result
|
||
|
are 16 bits or less, so either int or short multiply will work. }
|
||
|
|
||
|
function DEQUANTIZE(coef,quantval : int) : int;
|
||
|
begin
|
||
|
Dequantize := ( ISLOW_MULT_TYPE(coef) * quantval);
|
||
|
end;
|
||
|
|
||
|
{ Descale and correctly round an INT32 value that's scaled by N bits.
|
||
|
We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||
|
the fudge factor is correct for either sign of X. }
|
||
|
|
||
|
function DESCALE(x : INT32; n : int) : INT32;
|
||
|
var
|
||
|
shift_temp : INT32;
|
||
|
begin
|
||
|
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
|
||
|
shift_temp := x + (INT32(1) shl (n-1));
|
||
|
if shift_temp < 0 then
|
||
|
Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
|
||
|
else
|
||
|
Descale := (shift_temp shr n);
|
||
|
{$else}
|
||
|
Descale := (x + (INT32(1) shl (n-1)) shr n;
|
||
|
{$endif}
|
||
|
end;
|
||
|
|
||
|
{ Perform dequantization and inverse DCT on one block of coefficients. }
|
||
|
|
||
|
{GLOBAL}
|
||
|
procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
|
||
|
compptr : jpeg_component_info_ptr;
|
||
|
coef_block : JCOEFPTR;
|
||
|
output_buf : JSAMPARRAY;
|
||
|
output_col : JDIMENSION);
|
||
|
type
|
||
|
PWorkspace = ^TWorkspace;
|
||
|
TWorkspace = coef_bits_field; { buffers data between passes }
|
||
|
var
|
||
|
tmp0, tmp1, tmp2, tmp3 : INT32;
|
||
|
tmp10, tmp11, tmp12, tmp13 : INT32;
|
||
|
z1, z2, z3, z4, z5 : INT32;
|
||
|
inptr : JCOEFPTR;
|
||
|
quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
|
||
|
wsptr : PWorkspace;
|
||
|
outptr : JSAMPROW;
|
||
|
range_limit : JSAMPROW;
|
||
|
ctr : int;
|
||
|
workspace : TWorkspace;
|
||
|
{SHIFT_TEMPS}
|
||
|
var
|
||
|
dcval : int;
|
||
|
var
|
||
|
dcval_ : JSAMPLE;
|
||
|
begin
|
||
|
{ Each IDCT routine is responsible for range-limiting its results and
|
||
|
converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||
|
be quite far out of range if the input data is corrupt, so a bulletproof
|
||
|
range-limiting step is required. We use a mask-and-table-lookup method
|
||
|
to do the combined operations quickly. See the comments with
|
||
|
prepare_range_limit_table (in jdmaster.c) for more info. }
|
||
|
|
||
|
range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
|
||
|
|
||
|
|
||
|
{ Pass 1: process columns from input, store into work array. }
|
||
|
{ Note results are scaled up by sqrt(8) compared to a true IDCT; }
|
||
|
{ furthermore, we scale the results by 2**PASS1_BITS. }
|
||
|
|
||
|
inptr := coef_block;
|
||
|
quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
|
||
|
wsptr := PWorkspace(@workspace);
|
||
|
for ctr := pred(DCTSIZE) downto 0 do
|
||
|
begin
|
||
|
{ Due to quantization, we will usually find that many of the input
|
||
|
coefficients are zero, especially the AC terms. We can exploit this
|
||
|
by short-circuiting the IDCT calculation for any column in which all
|
||
|
the AC terms are zero. In that case each output is equal to the
|
||
|
DC coefficient (with scale factor as needed).
|
||
|
With typical images and quantization tables, half or more of the
|
||
|
column DCT calculations can be simplified this way. }
|
||
|
|
||
|
if ((inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and
|
||
|
(inptr^[DCTSIZE*3]=0) and (inptr^[DCTSIZE*4]=0) and
|
||
|
(inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and
|
||
|
(inptr^[DCTSIZE*7]=0)) then
|
||
|
begin
|
||
|
{ AC terms all zero }
|
||
|
dcval := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]) shl PASS1_BITS;
|
||
|
|
||
|
wsptr^[DCTSIZE*0] := dcval;
|
||
|
wsptr^[DCTSIZE*1] := dcval;
|
||
|
wsptr^[DCTSIZE*2] := dcval;
|
||
|
wsptr^[DCTSIZE*3] := dcval;
|
||
|
wsptr^[DCTSIZE*4] := dcval;
|
||
|
wsptr^[DCTSIZE*5] := dcval;
|
||
|
wsptr^[DCTSIZE*6] := dcval;
|
||
|
wsptr^[DCTSIZE*7] := dcval;
|
||
|
|
||
|
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
|
||
|
Inc(ISLOW_MULT_TYPE_PTR(quantptr));
|
||
|
Inc(int_ptr(wsptr));
|
||
|
continue;
|
||
|
end;
|
||
|
|
||
|
{ Even part: reverse the even part of the forward DCT. }
|
||
|
{ The rotator is sqrt(2)*c(-6). }
|
||
|
|
||
|
z2 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
|
||
|
z3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
|
||
|
|
||
|
z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
|
||
|
tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||
|
tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
|
||
|
|
||
|
z2 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
|
||
|
z3 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
|
||
|
|
||
|
tmp0 := (z2 + z3) shl CONST_BITS;
|
||
|
tmp1 := (z2 - z3) shl CONST_BITS;
|
||
|
|
||
|
tmp10 := tmp0 + tmp3;
|
||
|
tmp13 := tmp0 - tmp3;
|
||
|
tmp11 := tmp1 + tmp2;
|
||
|
tmp12 := tmp1 - tmp2;
|
||
|
|
||
|
{ Odd part per figure 8; the matrix is unitary and hence its
|
||
|
transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
|
||
|
|
||
|
tmp0 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
|
||
|
tmp1 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
|
||
|
tmp2 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
|
||
|
tmp3 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
|
||
|
|
||
|
z1 := tmp0 + tmp3;
|
||
|
z2 := tmp1 + tmp2;
|
||
|
z3 := tmp0 + tmp2;
|
||
|
z4 := tmp1 + tmp3;
|
||
|
z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
|
||
|
|
||
|
tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
|
||
|
tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
|
||
|
tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
|
||
|
tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
|
||
|
z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
|
||
|
z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
|
||
|
z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
|
||
|
z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
|
||
|
|
||
|
Inc(z3, z5);
|
||
|
Inc(z4, z5);
|
||
|
|
||
|
Inc(tmp0, z1 + z3);
|
||
|
Inc(tmp1, z2 + z4);
|
||
|
Inc(tmp2, z2 + z3);
|
||
|
Inc(tmp3, z1 + z4);
|
||
|
|
||
|
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
|
||
|
|
||
|
wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*7] := int (DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*1] := int (DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*6] := int (DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*2] := int (DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*5] := int (DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*3] := int (DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS));
|
||
|
wsptr^[DCTSIZE*4] := int (DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS));
|
||
|
|
||
|
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
|
||
|
Inc(ISLOW_MULT_TYPE_PTR(quantptr));
|
||
|
Inc(int_ptr(wsptr));
|
||
|
end;
|
||
|
|
||
|
{ Pass 2: process rows from work array, store into output array. }
|
||
|
{ Note that we must descale the results by a factor of 8 == 2**3, }
|
||
|
{ and also undo the PASS1_BITS scaling. }
|
||
|
|
||
|
wsptr := @workspace;
|
||
|
for ctr := 0 to pred(DCTSIZE) do
|
||
|
begin
|
||
|
outptr := output_buf^[ctr];
|
||
|
Inc(JSAMPLE_PTR(outptr), output_col);
|
||
|
{ Rows of zeroes can be exploited in the same way as we did with columns.
|
||
|
However, the column calculation has created many nonzero AC terms, so
|
||
|
the simplification applies less often (typically 5% to 10% of the time).
|
||
|
On machines with very fast multiplication, it's possible that the
|
||
|
test takes more time than it's worth. In that case this section
|
||
|
may be commented out. }
|
||
|
|
||
|
{$ifndef NO_ZERO_ROW_TEST}
|
||
|
if ((wsptr^[1]=0) and (wsptr^[2]=0) and (wsptr^[3]=0) and (wsptr^[4]=0)
|
||
|
and (wsptr^[5]=0) and (wsptr^[6]=0) and (wsptr^[7]=0)) then
|
||
|
begin
|
||
|
{ AC terms all zero }
|
||
|
JSAMPLE(dcval_) := range_limit^[int(DESCALE(INT32(wsptr^[0]),
|
||
|
PASS1_BITS+3)) and RANGE_MASK];
|
||
|
|
||
|
outptr^[0] := dcval_;
|
||
|
outptr^[1] := dcval_;
|
||
|
outptr^[2] := dcval_;
|
||
|
outptr^[3] := dcval_;
|
||
|
outptr^[4] := dcval_;
|
||
|
outptr^[5] := dcval_;
|
||
|
outptr^[6] := dcval_;
|
||
|
outptr^[7] := dcval_;
|
||
|
|
||
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
||
|
continue;
|
||
|
end;
|
||
|
{$endif}
|
||
|
|
||
|
{ Even part: reverse the even part of the forward DCT. }
|
||
|
{ The rotator is sqrt(2)*c(-6). }
|
||
|
|
||
|
z2 := INT32 (wsptr^[2]);
|
||
|
z3 := INT32 (wsptr^[6]);
|
||
|
|
||
|
z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
|
||
|
tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||
|
tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
|
||
|
|
||
|
tmp0 := (INT32(wsptr^[0]) + INT32(wsptr^[4])) shl CONST_BITS;
|
||
|
tmp1 := (INT32(wsptr^[0]) - INT32(wsptr^[4])) shl CONST_BITS;
|
||
|
|
||
|
tmp10 := tmp0 + tmp3;
|
||
|
tmp13 := tmp0 - tmp3;
|
||
|
tmp11 := tmp1 + tmp2;
|
||
|
tmp12 := tmp1 - tmp2;
|
||
|
|
||
|
{ Odd part per figure 8; the matrix is unitary and hence its
|
||
|
transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
|
||
|
|
||
|
tmp0 := INT32(wsptr^[7]);
|
||
|
tmp1 := INT32(wsptr^[5]);
|
||
|
tmp2 := INT32(wsptr^[3]);
|
||
|
tmp3 := INT32(wsptr^[1]);
|
||
|
|
||
|
z1 := tmp0 + tmp3;
|
||
|
z2 := tmp1 + tmp2;
|
||
|
z3 := tmp0 + tmp2;
|
||
|
z4 := tmp1 + tmp3;
|
||
|
z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
|
||
|
|
||
|
tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
|
||
|
tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
|
||
|
tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
|
||
|
tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
|
||
|
z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
|
||
|
z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
|
||
|
z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
|
||
|
z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
|
||
|
|
||
|
Inc(z3, z5);
|
||
|
Inc(z4, z5);
|
||
|
|
||
|
Inc(tmp0, z1 + z3);
|
||
|
Inc(tmp1, z2 + z4);
|
||
|
Inc(tmp2, z2 + z3);
|
||
|
Inc(tmp3, z1 + z4);
|
||
|
|
||
|
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
|
||
|
|
||
|
outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp3,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[7] := range_limit^[ int(DESCALE(tmp10 - tmp3,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[1] := range_limit^[ int(DESCALE(tmp11 + tmp2,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[6] := range_limit^[ int(DESCALE(tmp11 - tmp2,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[2] := range_limit^[ int(DESCALE(tmp12 + tmp1,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[5] := range_limit^[ int(DESCALE(tmp12 - tmp1,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[3] := range_limit^[ int(DESCALE(tmp13 + tmp0,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
outptr^[4] := range_limit^[ int(DESCALE(tmp13 - tmp0,
|
||
|
CONST_BITS+PASS1_BITS+3))
|
||
|
and RANGE_MASK];
|
||
|
|
||
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
end.
|