CentrED/Imaging/JpegLib/imjdsample.pas

593 lines
19 KiB
Plaintext
Raw Permalink Normal View History

2015-05-01 12:14:15 +02:00
unit imjdsample;
{ Original: jdsample.c; Copyright (C) 1991-1996, Thomas G. Lane. }
{ This file contains upsampling routines.
Upsampling input data is counted in "row groups". A row group
is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
sample rows of each component. Upsampling will normally produce
max_v_samp_factor pixel rows from each row group (but this could vary
if the upsampler is applying a scale factor of its own).
An excellent reference for image resampling is
Digital Image Warping, George Wolberg, 1990.
Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.}
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjutils,
imjpeglib,
imjdeferr,
imjerror;
{ Pointer to routine to upsample a single component }
type
upsample1_ptr = procedure (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
{ Module initialization routine for upsampling. }
{GLOBAL}
procedure jinit_upsampler (cinfo : j_decompress_ptr);
implementation
{ Private subobject }
type
my_upsample_ptr = ^my_upsampler;
my_upsampler = record
pub : jpeg_upsampler; { public fields }
{ Color conversion buffer. When using separate upsampling and color
conversion steps, this buffer holds one upsampled row group until it
has been color converted and output.
Note: we do not allocate any storage for component(s) which are full-size,
ie do not need rescaling. The corresponding entry of color_buf[] is
simply set to point to the input data array, thereby avoiding copying.}
color_buf : array[0..MAX_COMPONENTS-1] of JSAMPARRAY;
{ Per-component upsampling method pointers }
methods : array[0..MAX_COMPONENTS-1] of upsample1_ptr;
next_row_out : int; { counts rows emitted from color_buf }
rows_to_go : JDIMENSION; { counts rows remaining in image }
{ Height of an input row group for each component. }
rowgroup_height : array[0..MAX_COMPONENTS-1] of int;
{ These arrays save pixel expansion factors so that int_expand need not
recompute them each time. They are unused for other upsampling methods.}
h_expand : array[0..MAX_COMPONENTS-1] of UINT8 ;
v_expand : array[0..MAX_COMPONENTS-1] of UINT8 ;
end;
{ Initialize for an upsampling pass. }
{METHODDEF}
procedure start_pass_upsample (cinfo : j_decompress_ptr);
var
upsample : my_upsample_ptr;
begin
upsample := my_upsample_ptr (cinfo^.upsample);
{ Mark the conversion buffer empty }
upsample^.next_row_out := cinfo^.max_v_samp_factor;
{ Initialize total-height counter for detecting bottom of image }
upsample^.rows_to_go := cinfo^.output_height;
end;
{ Control routine to do upsampling (and color conversion).
In this version we upsample each component independently.
We upsample one row group into the conversion buffer, then apply
color conversion a row at a time. }
{METHODDEF}
procedure sep_upsample (cinfo : j_decompress_ptr;
input_buf : JSAMPIMAGE;
var in_row_group_ctr : JDIMENSION;
in_row_groups_avail : JDIMENSION;
output_buf : JSAMPARRAY;
var out_row_ctr : JDIMENSION;
out_rows_avail : JDIMENSION);
var
upsample : my_upsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
num_rows : JDIMENSION;
begin
upsample := my_upsample_ptr (cinfo^.upsample);
{ Fill the conversion buffer, if it's empty }
if (upsample^.next_row_out >= cinfo^.max_v_samp_factor) then
begin
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
{ Invoke per-component upsample method. Notice we pass a POINTER
to color_buf[ci], so that fullsize_upsample can change it. }
upsample^.methods[ci] (cinfo, compptr,
JSAMPARRAY(@ input_buf^[ci]^
[LongInt(in_row_group_ctr) * upsample^.rowgroup_height[ci]]),
upsample^.color_buf[ci]);
Inc(compptr);
end;
upsample^.next_row_out := 0;
end;
{ Color-convert and emit rows }
{ How many we have in the buffer: }
num_rows := JDIMENSION (cinfo^.max_v_samp_factor - upsample^.next_row_out);
{ Not more than the distance to the end of the image. Need this test
in case the image height is not a multiple of max_v_samp_factor: }
if (num_rows > upsample^.rows_to_go) then
num_rows := upsample^.rows_to_go;
{ And not more than what the client can accept: }
Dec(out_rows_avail, out_row_ctr);
if (num_rows > out_rows_avail) then
num_rows := out_rows_avail;
cinfo^.cconvert^.color_convert (cinfo,
JSAMPIMAGE(@(upsample^.color_buf)),
JDIMENSION (upsample^.next_row_out),
JSAMPARRAY(@(output_buf^[out_row_ctr])),
int (num_rows));
{ Adjust counts }
Inc(out_row_ctr, num_rows);
Dec(upsample^.rows_to_go, num_rows);
Inc(upsample^.next_row_out, num_rows);
{ When the buffer is emptied, declare this input row group consumed }
if (upsample^.next_row_out >= cinfo^.max_v_samp_factor) then
Inc(in_row_group_ctr);
end;
{ These are the routines invoked by sep_upsample to upsample pixel values
of a single component. One row group is processed per call. }
{ For full-size components, we just make color_buf[ci] point at the
input buffer, and thus avoid copying any data. Note that this is
safe only because sep_upsample doesn't declare the input row group
"consumed" until we are done color converting and emitting it. }
{METHODDEF}
procedure fullsize_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
begin
output_data_ptr := input_data;
end;
{ This is a no-op version used for "uninteresting" components.
These components will not be referenced by color conversion. }
{METHODDEF}
procedure noop_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
begin
output_data_ptr := NIL; { safety check }
end;
{ This version handles any integral sampling ratios.
This is not used for typical JPEG files, so it need not be fast.
Nor, for that matter, is it particularly accurate: the algorithm is
simple replication of the input pixel onto the corresponding output
pixels. The hi-falutin sampling literature refers to this as a
"box filter". A box filter tends to introduce visible artifacts,
so if you are actually going to use 3:1 or 4:1 sampling ratios
you would be well advised to improve this code. }
{METHODDEF}
procedure int_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
var
upsample : my_upsample_ptr;
output_data : JSAMPARRAY;
{register} inptr, outptr : JSAMPLE_PTR;
{register} invalue : JSAMPLE;
{register} h : int;
{outend}
h_expand, v_expand : int;
inrow, outrow : int;
var
outcount : int; { Nomssi: avoid pointer arithmetic }
begin
upsample := my_upsample_ptr (cinfo^.upsample);
output_data := output_data_ptr;
h_expand := upsample^.h_expand[compptr^.component_index];
v_expand := upsample^.v_expand[compptr^.component_index];
inrow := 0;
outrow := 0;
while (outrow < cinfo^.max_v_samp_factor) do
begin
{ Generate one output row with proper horizontal expansion }
inptr := JSAMPLE_PTR(input_data^[inrow]);
outptr := JSAMPLE_PTR(output_data^[outrow]);
outcount := cinfo^.output_width;
while (outcount > 0) do { Nomssi }
begin
invalue := inptr^; { don't need GETJSAMPLE() here }
Inc(inptr);
for h := pred(h_expand) downto 0 do
begin
outptr^ := invalue;
inc(outptr); { <-- fix: this was left out in PasJpeg 1.0 }
Dec(outcount); { thanks to Jannie Gerber for the report }
end;
end;
{ Generate any additional output rows by duplicating the first one }
if (v_expand > 1) then
begin
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
v_expand-1, cinfo^.output_width);
end;
Inc(inrow);
Inc(outrow, v_expand);
end;
end;
{ Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
It's still a box filter. }
{METHODDEF}
procedure h2v1_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
var
output_data : JSAMPARRAY;
{register} inptr, outptr : JSAMPLE_PTR;
{register} invalue : JSAMPLE;
{outend : JSAMPROW;}
outcount : int;
inrow : int;
begin
output_data := output_data_ptr;
for inrow := 0 to pred(cinfo^.max_v_samp_factor) do
begin
inptr := JSAMPLE_PTR(input_data^[inrow]);
outptr := JSAMPLE_PTR(output_data^[inrow]);
{outend := outptr + cinfo^.output_width;}
outcount := cinfo^.output_width;
while (outcount > 0) do
begin
invalue := inptr^; { don't need GETJSAMPLE() here }
Inc(inptr);
outptr^ := invalue;
Inc(outptr);
outptr^ := invalue;
Inc(outptr);
Dec(outcount, 2); { Nomssi: to avoid pointer arithmetic }
end;
end;
end;
{ Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
It's still a box filter. }
{METHODDEF}
procedure h2v2_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
var
output_data : JSAMPARRAY;
{register} inptr, outptr : JSAMPLE_PTR;
{register} invalue : JSAMPLE;
{outend : JSAMPROW;}
outcount : int;
inrow, outrow : int;
begin
output_data := output_data_ptr;
inrow := 0;
outrow := 0;
while (outrow < cinfo^.max_v_samp_factor) do
begin
inptr := JSAMPLE_PTR(input_data^[inrow]);
outptr := JSAMPLE_PTR(output_data^[outrow]);
{outend := outptr + cinfo^.output_width;}
outcount := cinfo^.output_width;
while (outcount > 0) do
begin
invalue := inptr^; { don't need GETJSAMPLE() here }
Inc(inptr);
outptr^ := invalue;
Inc(outptr);
outptr^ := invalue;
Inc(outptr);
Dec(outcount, 2);
end;
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
1, cinfo^.output_width);
Inc(inrow);
Inc(outrow, 2);
end;
end;
{ Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
The upsampling algorithm is linear interpolation between pixel centers,
also known as a "triangle filter". This is a good compromise between
speed and visual quality. The centers of the output pixels are 1/4 and 3/4
of the way between input pixel centers.
A note about the "bias" calculations: when rounding fractional values to
integer, we do not want to always round 0.5 up to the next integer.
If we did that, we'd introduce a noticeable bias towards larger values.
Instead, this code is arranged so that 0.5 will be rounded up or down at
alternate pixel locations (a simple ordered dither pattern). }
{METHODDEF}
procedure h2v1_fancy_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
var
output_data : JSAMPARRAY;
{register} pre_inptr, inptr, outptr : JSAMPLE_PTR;
{register} invalue : int;
{register} colctr : JDIMENSION;
inrow : int;
begin
output_data := output_data_ptr;
for inrow := 0 to pred(cinfo^.max_v_samp_factor) do
begin
inptr := JSAMPLE_PTR(input_data^[inrow]);
outptr := JSAMPLE_PTR(output_data^[inrow]);
{ Special case for first column }
pre_inptr := inptr;
invalue := GETJSAMPLE(inptr^);
Inc(inptr);
outptr^ := JSAMPLE (invalue);
Inc(outptr);
outptr^ := JSAMPLE ((invalue * 3 + GETJSAMPLE(inptr^) + 2) shr 2);
Inc(outptr);
for colctr := pred(compptr^.downsampled_width - 2) downto 0 do
begin
{ General case: 3/4 * nearer pixel + 1/4 * further pixel }
invalue := GETJSAMPLE(inptr^) * 3;
Inc(inptr);
outptr^ := JSAMPLE ((invalue + GETJSAMPLE(pre_inptr^) + 1) shr 2);
Inc(pre_inptr);
Inc(outptr);
outptr^ := JSAMPLE ((invalue + GETJSAMPLE(inptr^) + 2) shr 2);
Inc(outptr);
end;
{ Special case for last column }
invalue := GETJSAMPLE(inptr^);
outptr^ := JSAMPLE ((invalue * 3 + GETJSAMPLE(pre_inptr^) + 1) shr 2);
Inc(outptr);
outptr^ := JSAMPLE (invalue);
{Inc(outptr); - value never used }
end;
end;
{ Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
Again a triangle filter; see comments for h2v1 case, above.
It is OK for us to reference the adjacent input rows because we demanded
context from the main buffer controller (see initialization code). }
{METHODDEF}
procedure h2v2_fancy_upsample (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
var output_data_ptr : JSAMPARRAY);
var
output_data : JSAMPARRAY;
{register} inptr0, inptr1, outptr : JSAMPLE_PTR;
{$ifdef BITS_IN_JSAMPLE_IS_8}
{register} thiscolsum, lastcolsum, nextcolsum : int;
{$else}
{register} thiscolsum, lastcolsum, nextcolsum : INT32;
{$endif}
{register} colctr : JDIMENSION;
inrow, outrow, v : int;
var
prev_input_data : JSAMPARRAY; { Nomssi work around }
begin
output_data := output_data_ptr;
outrow := 0;
inrow := 0;
while (outrow < cinfo^.max_v_samp_factor) do
begin
for v := 0 to pred(2) do
begin
{ inptr0 points to nearest input row, inptr1 points to next nearest }
inptr0 := JSAMPLE_PTR(input_data^[inrow]);
if (v = 0) then { next nearest is row above }
begin
{inptr1 := JSAMPLE_PTR(input_data^[inrow-1]);}
prev_input_data := input_data; { work around }
Dec(JSAMPROW_PTR(prev_input_data)); { negative offsets }
inptr1 := JSAMPLE_PTR(prev_input_data^[inrow]);
end
else { next nearest is row below }
inptr1 := JSAMPLE_PTR(input_data^[inrow+1]);
outptr := JSAMPLE_PTR(output_data^[outrow]);
Inc(outrow);
{ Special case for first column }
thiscolsum := GETJSAMPLE(inptr0^) * 3 + GETJSAMPLE(inptr1^);
Inc(inptr0);
Inc(inptr1);
nextcolsum := GETJSAMPLE(inptr0^) * 3 + GETJSAMPLE(inptr1^);
Inc(inptr0);
Inc(inptr1);
outptr^ := JSAMPLE ((thiscolsum * 4 + 8) shr 4);
Inc(outptr);
outptr^ := JSAMPLE ((thiscolsum * 3 + nextcolsum + 7) shr 4);
Inc(outptr);
lastcolsum := thiscolsum; thiscolsum := nextcolsum;
for colctr := pred(compptr^.downsampled_width - 2) downto 0 do
begin
{ General case: 3/4 * nearer pixel + 1/4 * further pixel in each }
{ dimension, thus 9/16, 3/16, 3/16, 1/16 overall }
nextcolsum := GETJSAMPLE(inptr0^) * 3 + GETJSAMPLE(inptr1^);
Inc(inptr0);
Inc(inptr1);
outptr^ := JSAMPLE ((thiscolsum * 3 + lastcolsum + 8) shr 4);
Inc(outptr);
outptr^ := JSAMPLE ((thiscolsum * 3 + nextcolsum + 7) shr 4);
Inc(outptr);
lastcolsum := thiscolsum;
thiscolsum := nextcolsum;
end;
{ Special case for last column }
outptr^ := JSAMPLE ((thiscolsum * 3 + lastcolsum + 8) shr 4);
Inc(outptr);
outptr^ := JSAMPLE ((thiscolsum * 4 + 7) shr 4);
{Inc(outptr); - value never used }
end;
Inc(inrow);
end;
end;
{ Module initialization routine for upsampling. }
{GLOBAL}
procedure jinit_upsampler (cinfo : j_decompress_ptr);
var
upsample : my_upsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
need_buffer, do_fancy : boolean;
h_in_group, v_in_group, h_out_group, v_out_group : int;
begin
upsample := my_upsample_ptr (
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(my_upsampler)) );
cinfo^.upsample := jpeg_upsampler_ptr (upsample);
upsample^.pub.start_pass := start_pass_upsample;
upsample^.pub.upsample := sep_upsample;
upsample^.pub.need_context_rows := FALSE; { until we find out differently }
if (cinfo^.CCIR601_sampling) then { this isn't supported }
ERREXIT(j_common_ptr(cinfo), JERR_CCIR601_NOTIMPL);
{ jdmainct.c doesn't support context rows when min_DCT_scaled_size := 1,
so don't ask for it. }
do_fancy := cinfo^.do_fancy_upsampling and (cinfo^.min_DCT_scaled_size > 1);
{ Verify we can handle the sampling factors, select per-component methods,
and create storage as needed. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
{ Compute size of an "input group" after IDCT scaling. This many samples
are to be converted to max_h_samp_factor * max_v_samp_factor pixels. }
h_in_group := (compptr^.h_samp_factor * compptr^.DCT_scaled_size) div
cinfo^.min_DCT_scaled_size;
v_in_group := (compptr^.v_samp_factor * compptr^.DCT_scaled_size) div
cinfo^.min_DCT_scaled_size;
h_out_group := cinfo^.max_h_samp_factor;
v_out_group := cinfo^.max_v_samp_factor;
upsample^.rowgroup_height[ci] := v_in_group; { save for use later }
need_buffer := TRUE;
if (not compptr^.component_needed) then
begin
{ Don't bother to upsample an uninteresting component. }
upsample^.methods[ci] := noop_upsample;
need_buffer := FALSE;
end
else
if (h_in_group = h_out_group) and (v_in_group = v_out_group) then
begin
{ Fullsize components can be processed without any work. }
upsample^.methods[ci] := fullsize_upsample;
need_buffer := FALSE;
end
else
if (h_in_group * 2 = h_out_group) and
(v_in_group = v_out_group) then
begin
{ Special cases for 2h1v upsampling }
if (do_fancy) and (compptr^.downsampled_width > 2) then
upsample^.methods[ci] := h2v1_fancy_upsample
else
upsample^.methods[ci] := h2v1_upsample;
end
else
if (h_in_group * 2 = h_out_group) and
(v_in_group * 2 = v_out_group) then
begin
{ Special cases for 2h2v upsampling }
if (do_fancy) and (compptr^.downsampled_width > 2) then
begin
upsample^.methods[ci] := h2v2_fancy_upsample;
upsample^.pub.need_context_rows := TRUE;
end
else
upsample^.methods[ci] := h2v2_upsample;
end
else
if ((h_out_group mod h_in_group) = 0) and
((v_out_group mod v_in_group) = 0) then
begin
{ Generic integral-factors upsampling method }
upsample^.methods[ci] := int_upsample;
upsample^.h_expand[ci] := UINT8 (h_out_group div h_in_group);
upsample^.v_expand[ci] := UINT8 (v_out_group div v_in_group);
end
else
ERREXIT(j_common_ptr(cinfo), JERR_FRACT_SAMPLE_NOTIMPL);
if (need_buffer) then
begin
upsample^.color_buf[ci] := cinfo^.mem^.alloc_sarray
(j_common_ptr(cinfo), JPOOL_IMAGE,
JDIMENSION (jround_up( long (cinfo^.output_width),
long (cinfo^.max_h_samp_factor))),
JDIMENSION (cinfo^.max_v_samp_factor));
end;
Inc(compptr);
end;
end;
end.