AdventOfCode2023/UPolynomialRoots.pas

206 lines
6.5 KiB
Plaintext

{
Solutions to the Advent Of Code.
Copyright (C) 2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
}
unit UPolynomialRoots;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, Generics.Collections, UPolynomial, UBigInt;
type
{ TIsolatingInterval }
// Represents an isolating interval of the form [C / 2^K, (C + H) / 2^K] in respect to [0, 1] or [A, B] in respect to
// [0, 2^boundexp], with A = C * 2^boundexp / 2^K and B = (C + H) * 2^boundexp / 2^K.
TIsolatingInterval = record
C: TBigInt;
K, H, BoundExp: Cardinal;
A, B: TBigInt;
end;
TIsolatingIntervals = specialize TList<TIsolatingInterval>;
TIsolatingIntervalArray = array of TIsolatingInterval;
{ TPolynomialRoots }
TPolynomialRoots = class
private
// Returns the exponent (base two) of an upper bound for the roots of the given polynomial, i.e. all real roots of
// the given polynomial are less or equal than 2^b, where b is the returned positive integer.
class function CalcUpperRootBound(constref APolynomial: TBigIntPolynomial): Cardinal;
class function CreateIsolatingInterval(constref AC: TBigInt; const AK, AH: Cardinal; constref ABoundExp: Cardinal):
TIsolatingInterval;
public
// Returns root-isolating intervals for non-negative, non-multiple roots.
class function BisectIsolation(constref APolynomial: TBigIntPolynomial): TIsolatingIntervalArray;
// Returns root-isolating intervals for non-multiple roots in the interval [0, 2^boundexp].
class function BisectIsolation(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal;
const AFindIntegers: Boolean = False): TIsolatingIntervalArray;
// Returns non-negative, non-multiple, integer roots in the interval [0, 2^boundexp].
class function BisectInteger(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal):
TBigIntArray;
end;
implementation
{ TPolynomialRoots }
class function TPolynomialRoots.CalcUpperRootBound(constref APolynomial: TBigIntPolynomial): Cardinal;
var
i, sign: Integer;
an, ai, max: TBigInt;
numeratorBit, denominatorBit: Int64;
begin
// We need a_n > 0 here, so we use -sign(a_n) instead of actually flipping the polynomial.
// Sign is not 0 because a_n is not 0.
an := APolynomial.Coefficient[APolynomial.Degree];
sign := -an.Sign;
// This is a simplification of Cauchy's bound to avoid division and make it a power of two.
// https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Bounds_of_positive_real_roots
max := TBigInt.Zero;
for i := 0 to APolynomial.Degree - 1 do begin
ai := sign * APolynomial.Coefficient[i];
if max < ai then
max := ai;
end;
numeratorBit := max.GetMostSignificantBitIndex + 1;
denominatorBit := an.GetMostSignificantBitIndex;
Result := numeratorBit - denominatorBit;
end;
class function TPolynomialRoots.CreateIsolatingInterval(constref AC: TBigInt; const AK, AH: Cardinal;
constref ABoundExp: Cardinal): TIsolatingInterval;
begin
Result.C := AC;
Result.K := AK;
Result.H := AH;
Result.BoundExp := ABoundExp;
if ABoundExp >= AK then
begin
Result.A := AC << (ABoundExp - AK);
Result.B := (AC + AH) << (ABoundExp - AK);
end
else begin
Result.A := AC << (ABoundExp - AK);
Result.B := (AC + AH) << (ABoundExp - AK);
end;
end;
class function TPolynomialRoots.BisectIsolation(constref APolynomial: TBigIntPolynomial): TIsolatingIntervalArray;
var
boundExp: Cardinal;
begin
boundExp := CalcUpperRootBound(APolynomial);
Result := BisectIsolation(APolynomial, boundExp);
end;
// This is adapted from https://en.wikipedia.org/wiki/Real-root_isolation#Bisection_method
class function TPolynomialRoots.BisectIsolation(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal;
const AFindIntegers: Boolean): TIsolatingIntervalArray;
type
TWorkItem = record
C: TBigInt;
K: Cardinal;
P: TBigIntPolynomial;
end;
TWorkStack = specialize TStack<TWorkItem>;
var
item: TWorkItem;
stack: TWorkStack;
n, v: Integer;
varq: TBigIntPolynomial;
iso: TIsolatingIntervals;
begin
iso := TIsolatingIntervals.Create;
stack := TWorkStack.Create;
item.C := 0;
item.K := 0;
item.P := APolynomial.ScaleVariableByPowerOfTwo(ABoundExp);
stack.Push(item);
n := item.P.Degree;
while stack.Count > 0 do
begin
item := stack.Pop;
if item.P.Coefficient[0] = TBigInt.Zero then
begin
// Found an integer root at 0.
item.P := item.P.DivideByVariable;
Dec(n);
iso.Add(CreateIsolatingInterval(item.C, item.K, 0, ABoundExp));
end;
varq := item.P.RevertOrderOfCoefficients.TranslateVariableByOne;
v := varq.CalcSignVariations;
if (v > 1)
or ((v = 1) and AFindIntegers and (item.K < ABoundExp)) then
begin
// Bisects, first new work item is (2c, k + 1, 2^n * q(x/2)).
item.C := item.C << 1;
Inc(item.K);
item.P := item.P.ScaleVariableByHalf.ScaleByPowerOfTwo(n);
stack.Push(item);
// ... second new work item is (2c + 1, k + 1, 2^n * q((x+1)/2)).
item.C := item.C + 1;
item.P := item.P.TranslateVariableByOne;
stack.Push(item);
end
else if v = 1 then
begin
// Found isolating interval.
iso.Add(CreateIsolatingInterval(item.C, item.K, 1, ABoundExp));
end;
end;
Result := iso.ToArray;
iso.Free;
stack.Free;
end;
class function TPolynomialRoots.BisectInteger(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal):
TBigIntArray;
var
intervals: TIsolatingIntervalArray;
i: TIsolatingInterval;
r: specialize TList<TBigInt>;
value: Int64;
begin
// Calculates isolating intervals.
intervals := BisectIsolation(APolynomial, ABoundExp, True);
r := specialize TList<TBigInt>.Create;
for i in intervals do
if i.H = 0 then
r.Add(i.A)
else if i.A.TryToInt64(value) and (APolynomial.CalcValueAt(value) = 0) then
r.Add(value)
else if i.B.TryToInt64(value) and (APolynomial.CalcValueAt(value) = 0) then
r.Add(value);
Result := r.ToArray;
r.Free;
end;
end.