AdventOfCode2023/tests/UPolynomialRootsTestCases.pas

139 lines
4.5 KiB
Plaintext

{
Solutions to the Advent Of Code.
Copyright (C) 2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
}
unit UPolynomialRootsTestCases;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, fpcunit, testregistry, UPolynomial, UPolynomialRoots, UBigInt;
type
{ TPolynomialRootsTestCase }
TPolynomialRootsTestCase = class(TTestCase)
private
procedure AssertBisectIntervals(AIsolatingIntervals: TIsolatingIntervalArray; constref AExpectedRoots:
array of Cardinal);
procedure AssertBisectIntegers(ARoots: TBigIntArray; constref AExpectedRoots: array of Cardinal);
published
procedure TestBisectNoBound;
procedure TestBisectWithBound;
procedure TestBisectInteger;
end;
implementation
{ TPolynomialRootsTestCase }
procedure TPolynomialRootsTestCase.AssertBisectIntervals(AIsolatingIntervals: TIsolatingIntervalArray;
constref AExpectedRoots: array of Cardinal);
var
exp: Cardinal;
found: Boolean;
i, foundIndex: Integer;
begin
AssertEquals('Unexpected number of isolating intervals.', Length(AExpectedRoots), Length(AIsolatingIntervals));
for exp in AExpectedRoots do
begin
found := False;
for i := 0 to Length(AIsolatingIntervals) - 1 do
if (AIsolatingIntervals[i].A <= exp) and (exp <= AIsolatingIntervals[i].B) then
begin
found := True;
foundIndex := i;
Break;
end;
AssertTrue('No isolating interval for expected root ' + IntToStr(exp) + ' found.', found);
Delete(AIsolatingIntervals, foundIndex, 1);
end;
end;
procedure TPolynomialRootsTestCase.AssertBisectIntegers(ARoots: TBigIntArray; constref AExpectedRoots:
array of Cardinal);
var
exp: Cardinal;
found: Boolean;
i, foundIndex: Integer;
begin
AssertEquals('Unexpected number of integer roots.', Length(AExpectedRoots), Length(ARoots));
for exp in AExpectedRoots do
begin
found := False;
for i := 0 to Length(ARoots) - 1 do
if ARoots[i] = exp then
begin
found := True;
foundIndex := i;
Break;
end;
AssertTrue('Expected root ' + IntToStr(exp) + ' not found.', found);
Delete(ARoots, foundIndex, 1);
end;
end;
procedure TPolynomialRootsTestCase.TestBisectNoBound;
const
expRoots: array of Cardinal = (34000, 23017, 5);
var
a: TBigIntPolynomial;
r: TIsolatingIntervalArray;
begin
// y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112)
// = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000
a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]);
r := TPolynomialRoots.BisectIsolation(a);
AssertBisectIntervals(r, expRoots);
end;
procedure TPolynomialRootsTestCase.TestBisectWithBound;
const
expRoots: array of Cardinal = (23017, 5);
var
a: TBigIntPolynomial;
r: TIsolatingIntervalArray;
begin
// y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112)
// = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000
a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]);
r := TPolynomialRoots.BisectIsolation(a, 15);
AssertBisectIntervals(r, expRoots);
end;
procedure TPolynomialRootsTestCase.TestBisectInteger;
const
expRoots: array of Cardinal = (23017, 5);
var
a: TBigIntPolynomial;
r: TBigIntArray;
begin
// y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112)
// = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000
a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]);
r := TPolynomialRoots.BisectInteger(a, 15);
AssertBisectIntegers(r, expRoots);
end;
initialization
RegisterTest('Helper', TPolynomialRootsTestCase);
end.