206 lines
6.5 KiB
Plaintext
206 lines
6.5 KiB
Plaintext
{
|
|
Solutions to the Advent Of Code.
|
|
Copyright (C) 2024 Stefan Müller
|
|
|
|
This program is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program. If not, see <http://www.gnu.org/licenses/>.
|
|
}
|
|
|
|
unit UPolynomialRoots;
|
|
|
|
{$mode ObjFPC}{$H+}
|
|
|
|
interface
|
|
|
|
uses
|
|
Classes, SysUtils, Generics.Collections, UPolynomial, UBigInt;
|
|
|
|
type
|
|
|
|
{ TIsolatingInterval }
|
|
|
|
// Represents an isolating interval of the form [C / 2^K, (C + H) / 2^K] in respect to [0, 1] or [A, B] in respect to
|
|
// [0, 2^boundexp], with A = C * 2^boundexp / 2^K and B = (C + H) * 2^boundexp / 2^K.
|
|
TIsolatingInterval = record
|
|
C: TBigInt;
|
|
K, H, BoundExp: Cardinal;
|
|
A, B: TBigInt;
|
|
end;
|
|
|
|
TIsolatingIntervals = specialize TList<TIsolatingInterval>;
|
|
|
|
TIsolatingIntervalArray = array of TIsolatingInterval;
|
|
|
|
{ TPolynomialRoots }
|
|
|
|
TPolynomialRoots = class
|
|
private
|
|
// Returns the exponent (base two) of an upper bound for the roots of the given polynomial, i.e. all real roots of
|
|
// the given polynomial are less or equal than 2^b, where b is the returned positive integer.
|
|
class function CalcUpperRootBound(constref APolynomial: TBigIntPolynomial): Cardinal;
|
|
class function CreateIsolatingInterval(constref AC: TBigInt; const AK, AH: Cardinal; constref ABoundExp: Cardinal):
|
|
TIsolatingInterval;
|
|
public
|
|
// Returns root-isolating intervals for non-negative, non-multiple roots.
|
|
class function BisectIsolation(constref APolynomial: TBigIntPolynomial): TIsolatingIntervalArray;
|
|
// Returns root-isolating intervals for non-multiple roots in the interval [0, 2^boundexp].
|
|
class function BisectIsolation(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal;
|
|
const AFindIntegers: Boolean = False): TIsolatingIntervalArray;
|
|
// Returns non-negative, non-multiple, integer roots in the interval [0, 2^boundexp].
|
|
class function BisectInteger(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal):
|
|
TBigIntArray;
|
|
end;
|
|
|
|
implementation
|
|
|
|
{ TPolynomialRoots }
|
|
|
|
class function TPolynomialRoots.CalcUpperRootBound(constref APolynomial: TBigIntPolynomial): Cardinal;
|
|
var
|
|
i, sign: Integer;
|
|
an, ai, max: TBigInt;
|
|
numeratorBit, denominatorBit: Int64;
|
|
begin
|
|
// We need a_n > 0 here, so we use -sign(a_n) instead of actually flipping the polynomial.
|
|
// Sign is not 0 because a_n is not 0.
|
|
an := APolynomial.Coefficient[APolynomial.Degree];
|
|
sign := -an.Sign;
|
|
|
|
// This is a simplification of Cauchy's bound to avoid division and make it a power of two.
|
|
// https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Bounds_of_positive_real_roots
|
|
max := TBigInt.Zero;
|
|
for i := 0 to APolynomial.Degree - 1 do begin
|
|
ai := sign * APolynomial.Coefficient[i];
|
|
if max < ai then
|
|
max := ai;
|
|
end;
|
|
numeratorBit := max.GetMostSignificantBitIndex + 1;
|
|
denominatorBit := an.GetMostSignificantBitIndex;
|
|
Result := numeratorBit - denominatorBit;
|
|
end;
|
|
|
|
class function TPolynomialRoots.CreateIsolatingInterval(constref AC: TBigInt; const AK, AH: Cardinal;
|
|
constref ABoundExp: Cardinal): TIsolatingInterval;
|
|
begin
|
|
Result.C := AC;
|
|
Result.K := AK;
|
|
Result.H := AH;
|
|
Result.BoundExp := ABoundExp;
|
|
if ABoundExp >= AK then
|
|
begin
|
|
Result.A := AC << (ABoundExp - AK);
|
|
Result.B := (AC + AH) << (ABoundExp - AK);
|
|
end
|
|
else begin
|
|
Result.A := AC << (ABoundExp - AK);
|
|
Result.B := (AC + AH) << (ABoundExp - AK);
|
|
end;
|
|
end;
|
|
|
|
class function TPolynomialRoots.BisectIsolation(constref APolynomial: TBigIntPolynomial): TIsolatingIntervalArray;
|
|
var
|
|
boundExp: Cardinal;
|
|
begin
|
|
boundExp := CalcUpperRootBound(APolynomial);
|
|
Result := BisectIsolation(APolynomial, boundExp);
|
|
end;
|
|
|
|
// This is adapted from https://en.wikipedia.org/wiki/Real-root_isolation#Bisection_method
|
|
class function TPolynomialRoots.BisectIsolation(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal;
|
|
const AFindIntegers: Boolean): TIsolatingIntervalArray;
|
|
type
|
|
TWorkItem = record
|
|
C: TBigInt;
|
|
K: Cardinal;
|
|
P: TBigIntPolynomial;
|
|
end;
|
|
TWorkStack = specialize TStack<TWorkItem>;
|
|
var
|
|
item: TWorkItem;
|
|
stack: TWorkStack;
|
|
n, v: Integer;
|
|
varq: TBigIntPolynomial;
|
|
iso: TIsolatingIntervals;
|
|
begin
|
|
iso := TIsolatingIntervals.Create;
|
|
stack := TWorkStack.Create;
|
|
|
|
item.C := 0;
|
|
item.K := 0;
|
|
item.P := APolynomial.ScaleVariableByPowerOfTwo(ABoundExp);
|
|
stack.Push(item);
|
|
n := item.P.Degree;
|
|
|
|
while stack.Count > 0 do
|
|
begin
|
|
item := stack.Pop;
|
|
if item.P.Coefficient[0] = TBigInt.Zero then
|
|
begin
|
|
// Found an integer root at 0.
|
|
item.P := item.P.DivideByVariable;
|
|
Dec(n);
|
|
iso.Add(CreateIsolatingInterval(item.C, item.K, 0, ABoundExp));
|
|
end;
|
|
|
|
varq := item.P.RevertOrderOfCoefficients.TranslateVariableByOne;
|
|
v := varq.CalcSignVariations;
|
|
if (v > 1)
|
|
or ((v = 1) and AFindIntegers and (item.K < ABoundExp)) then
|
|
begin
|
|
// Bisects, first new work item is (2c, k + 1, 2^n * q(x/2)).
|
|
item.C := item.C << 1;
|
|
Inc(item.K);
|
|
item.P := item.P.ScaleVariableByHalf.ScaleByPowerOfTwo(n);
|
|
stack.Push(item);
|
|
// ... second new work item is (2c + 1, k + 1, 2^n * q((x+1)/2)).
|
|
item.C := item.C + 1;
|
|
item.P := item.P.TranslateVariableByOne;
|
|
stack.Push(item);
|
|
end
|
|
else if v = 1 then
|
|
begin
|
|
// Found isolating interval.
|
|
iso.Add(CreateIsolatingInterval(item.C, item.K, 1, ABoundExp));
|
|
end;
|
|
end;
|
|
Result := iso.ToArray;
|
|
iso.Free;
|
|
stack.Free;
|
|
end;
|
|
|
|
class function TPolynomialRoots.BisectInteger(constref APolynomial: TBigIntPolynomial; constref ABoundExp: Cardinal):
|
|
TBigIntArray;
|
|
var
|
|
intervals: TIsolatingIntervalArray;
|
|
i: TIsolatingInterval;
|
|
r: specialize TList<TBigInt>;
|
|
value: Int64;
|
|
begin
|
|
// Calculates isolating intervals.
|
|
intervals := BisectIsolation(APolynomial, ABoundExp, True);
|
|
r := specialize TList<TBigInt>.Create;
|
|
|
|
for i in intervals do
|
|
if i.H = 0 then
|
|
r.Add(i.A)
|
|
else if i.A.TryToInt64(value) and (APolynomial.CalcValueAt(value) = 0) then
|
|
r.Add(value)
|
|
else if i.B.TryToInt64(value) and (APolynomial.CalcValueAt(value) = 0) then
|
|
r.Add(value);
|
|
|
|
Result := r.ToArray;
|
|
r.Free;
|
|
end;
|
|
|
|
end.
|
|
|