{
Solutions to the Advent Of Code.
Copyright (C) 2023 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see .
}
unit UMirageMaintenance;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, Generics.Collections, USolver;
type
{ TMirageMaintenance }
TMirageMaintenance = class(TSolver)
private
FN: Integer;
FLagrangePolynomialsInN: specialize TList;
procedure CalcLagrangePolynomials;
public
constructor Create;
destructor Destroy; override;
procedure ProcessDataLine(const ALine: string); override;
procedure Finish; override;
function GetDataFileName: string; override;
function GetPuzzleName: string; override;
end;
implementation
{ TMirageMaintenance }
procedure TMirageMaintenance.CalcLagrangePolynomials;
var
sign, i, j: Integer;
begin
FLagrangePolynomialsInN.Clear;
if FN mod 2 = 0 then
sign := -1
else
sign := 1;
// Calculates the polynomials in N and -1.
for i := 0 to FN - 1 do
begin
FLagrangePolynomialsInN.Add(sign);
sign := -sign;
if i < FN - FN div 2 then
begin
// Multiplies by the non-cancelled numerator terms.
for j := FN - i + 1 to FN do
FLagrangePolynomialsInN[i] := FLagrangePolynomialsInN[i] * j;
// Divides by the non-cancelled denominator terms.
for j := 2 to i do
FLagrangePolynomialsInN[i] := FLagrangePolynomialsInN[i] div j;
end
else begin
// Multiplies by the non-cancelled numerator terms.
for j := i + 1 to FN do
FLagrangePolynomialsInN[i] := FLagrangePolynomialsInN[i] * j;
// Divides by the non-cancelled over-counted numerator term.
FLagrangePolynomialsInN[i] := FLagrangePolynomialsInN[i] div (FN - i);
// Divides by the non-cancelled denominator terms.
for j := 2 to FN - i - 1 do
FLagrangePolynomialsInN[i] := FLagrangePolynomialsInN[i] div j;
end;
end;
end;
constructor TMirageMaintenance.Create;
begin
FLagrangePolynomialsInN := specialize TList.Create;
FN := 0;
end;
destructor TMirageMaintenance.Destroy;
begin
FLagrangePolynomialsInN.Free;
inherited Destroy;
end;
procedure TMirageMaintenance.ProcessDataLine(const ALine: string);
var
split: TStringArray;
i, y: Integer;
p: Int64;
begin
split := ALine.Split(' ');
if Length(split) <> FN then
begin
FN := Length(split);
CalcLagrangePolynomials;
end;
for i := 0 to FN - 1 do
begin
y := StrToInt(split[i]);
p := y * FLagrangePolynomialsInN[i];
Inc(FPart1, p);
end;
end;
procedure TMirageMaintenance.Finish;
begin
end;
function TMirageMaintenance.GetDataFileName: string;
begin
Result := 'mirage_maintenance.txt';
end;
function TMirageMaintenance.GetPuzzleName: string;
begin
Result := 'Day 9: Mirage Maintenance';
end;
end.