{ Solutions to the Advent Of Code. Copyright (C) 2024 Stefan Müller This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . } unit UPolynomialRootsTestCases; {$mode ObjFPC}{$H+} interface uses Classes, SysUtils, fpcunit, testregistry, UPolynomial, UPolynomialRoots, UBigInt; type { TPolynomialRootsTestCase } TPolynomialRootsTestCase = class(TTestCase) private procedure AssertBisectResult(constref AIsolatingIntervals: TIsolatingIntervals; constref AExpectedRoots: array of Cardinal); protected FRootIsolation: TRootIsolation; procedure SetUp; override; procedure TearDown; override; published procedure TestBisectNoBound; procedure TestBisectWithBound; end; implementation { TPolynomialRootsTestCase } procedure TPolynomialRootsTestCase.AssertBisectResult(constref AIsolatingIntervals: TIsolatingIntervals; constref AExpectedRoots: array of Cardinal); var exp: Cardinal; found: Boolean; i, foundIndex: Integer; begin AssertEquals('Unexpected number of isolating intervals.', Length(AExpectedRoots), AIsolatingIntervals.Count); for exp in AExpectedRoots do begin found := False; for i := 0 to AIsolatingIntervals.Count - 1 do if (AIsolatingIntervals[i].A <= exp) and (exp <= AIsolatingIntervals[i].B) then begin found := True; foundIndex := i; Break; end; AssertTrue('No isolating interval for expected root ' + IntToStr(exp) + ' found.', found); AIsolatingIntervals.Delete(foundIndex); end; end; procedure TPolynomialRootsTestCase.SetUp; begin inherited SetUp; FRootIsolation := TRootIsolation.Create; end; procedure TPolynomialRootsTestCase.TearDown; begin FRootIsolation.Free; inherited TearDown; end; procedure TPolynomialRootsTestCase.TestBisectNoBound; const expRoots: array of Cardinal = (34000, 23017, 5); var a: TBigIntPolynomial; r: TIsolatingIntervals; begin // y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112) // = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000 a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]); r := FRootIsolation.Bisect(a); AssertBisectResult(r, expRoots); r.Free; end; procedure TPolynomialRootsTestCase.TestBisectWithBound; const expRoots: array of Cardinal = (23017, 5); var a: TBigIntPolynomial; r: TIsolatingIntervals; begin // y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112) // = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000 a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]); r := FRootIsolation.Bisect(a, TBigInt.One << 15); AssertBisectResult(r, expRoots); r.Free; end; initialization RegisterTest(TPolynomialRootsTestCase); end.