{ Solutions to the Advent Of Code. Copyright (C) 2024 Stefan Müller This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . } unit UPolynomialRoots; {$mode ObjFPC}{$H+} interface uses Classes, SysUtils, Generics.Collections, UPolynomial, UBigInt; type { TIsolatingInterval } // Represents an isolating interval of the form [C / 2^K, (C + H) / 2^K] in respect to [0, 1] or [A / 2^K, B / 2^K] in // respect to [0, bound], with A = C * bound and B = (C + H) * bound. TIsolatingInterval = record C, K, H: Cardinal; Bound, A, B: TBigInt; end; TIsolatingIntervals = specialize TList; { TRootIsolation } TRootIsolation = class private function CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt; function GetIsolatingInterval(const AC, AK, AH: Cardinal; constref ABound: TBigInt): TIsolatingInterval; public function Bisect(constref APolynomial: TBigIntPolynomial): TIsolatingIntervals; end; implementation { TRootIsolation } function TRootIsolation.CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt; var i, sign: Integer; an, ai, max: TBigInt; numeratorBit, denominatorBit: Int64; begin // We need a_n > 0 here, so we use -sign(a_n) instead of actually flipping the polynomial. // Sign is not 0 because a_n is not 0. an := APolynomial.Coefficient[APolynomial.Degree]; sign := -an.Sign; // This is a simplification of Cauchy's bound to avoid division and make it a power of two. // https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Bounds_of_positive_real_roots max := TBigInt.Zero; for i := 0 to APolynomial.Degree - 1 do begin ai := sign * APolynomial.Coefficient[i]; if max < ai then max := ai; end; numeratorBit := max.GetMostSignificantBitIndex + 1; denominatorBit := an.GetMostSignificantBitIndex; Result := TBigInt.One << (numeratorBit - denominatorBit); end; function TRootIsolation.GetIsolatingInterval(const AC, AK, AH: Cardinal; constref ABound: TBigInt): TIsolatingInterval; begin Result.C := AC; Result.K := AK; Result.H := AH; Result.Bound := ABound; Result.A := AC * ABound; Result.B := (AC + AH) * ABound; end; // This is adapted from // https://en.wikipedia.org/wiki/Real-root_isolation#Bisection_method function TRootIsolation.Bisect(constref APolynomial: TBigIntPolynomial): TIsolatingIntervals; type TWorkItem = record C, K: Cardinal; P: TBigIntPolynomial; end; TWorkStack = specialize TStack; var bound: TBigInt; item: TWorkItem; stack: TWorkStack; n, v: Integer; varq: TBigIntPolynomial; begin Result := TIsolatingIntervals.Create; stack := TWorkStack.Create; bound := CalcSimpleRootBound(APolynomial); n := item.P.Degree; item.C := 0; item.K := 0; item.P := APolynomial.ScaleVariable(bound); stack.Push(item); while stack.Count > 0 do begin item := stack.Pop; if item.P.Coefficient[0] = TBigInt.Zero then begin // Found an integer root at 0. item.P := item.P.DivideByVariable; Dec(n); Result.Add(GetIsolatingInterval(item.C, item.K, 0, bound)); end; varq := item.P.RevertOrderOfCoefficients.TranslateVariableByOne; v := varq.CalcSignVariations; if v = 1 then begin // Found isolating interval. Result.Add(GetIsolatingInterval(item.C, item.K, 1, bound)); end else if v > 1 then begin // Bisects, first new work item is (2c, k + 1, 2^n * q(x/2)). item.C := item.C << 1; Inc(item.K); item.P := item.P.ScaleVariableByHalf.ScaleByPowerOfTwo(n); stack.Push(item); // ... second new work item is (2c + 1, k + 1, 2^n * q((x+1)/2)). item.C := item.C + 1; item.P := item.P.TranslateVariableByOne; stack.Push(item); end; end; stack.Free; end; end.