{ Solutions to the Advent Of Code. Copyright (C) 2024 Stefan Müller This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . } unit UPolynomialRootsTestCases; {$mode ObjFPC}{$H+} interface uses Classes, SysUtils, fpcunit, testregistry, UPolynomial, UPolynomialRoots, UBigInt; type { TPolynomialRootsTestCase } TPolynomialRootsTestCase = class(TTestCase) protected FRootIsolation: TRootIsolation; procedure SetUp; override; procedure TearDown; override; published procedure TestBisectionRootIsolation; end; implementation { TPolynomialRootsTestCase } procedure TPolynomialRootsTestCase.SetUp; begin inherited SetUp; FRootIsolation := TRootIsolation.Create; end; procedure TPolynomialRootsTestCase.TearDown; begin FRootIsolation.Free; inherited TearDown; end; procedure TPolynomialRootsTestCase.TestBisectionRootIsolation; var a: TBigIntPolynomial; r: Int64; begin // y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112) // = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000 a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]); r := FRootIsolation.Bisect(a); AssertEquals(0, r); end; initialization RegisterTest(TPolynomialRootsTestCase); end.