{ Solutions to the Advent Of Code. Copyright (C) 2024 Stefan Müller This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . } unit UPolynomialTestCases; {$mode ObjFPC}{$H+} interface uses Classes, SysUtils, fpcunit, testregistry, UPolynomial, UBigInt; type { TBigIntPolynomialTestCase } TBigIntPolynomialTestCase = class(TTestCase) private procedure TestCreateWithDegree(const ACoefficients: array of TBigInt; const ADegree: Integer); published procedure TestCreate; procedure TestCreateDegreeOne; procedure TestCreateDegreeZero; procedure TestCreateDegreeZeroTrim; procedure TestEqual; procedure TestUnequalSameLength; procedure TestUnequalDifferentLength; procedure TestTrimLeadingZeros; procedure TestBisectionRootIsolation; end; implementation { TBigIntPolynomialTestCase } procedure TBigIntPolynomialTestCase.TestCreateWithDegree(const ACoefficients: array of TBigInt; const ADegree: Integer); var a: TBigIntPolynomial; begin a := TBigIntPolynomial.Create(ACoefficients); AssertEquals('Degree of created polynomial incorrect.', ADegree, a.Degree); end; procedure TBigIntPolynomialTestCase.TestCreate; begin TestCreateWithDegree([992123, 7, 20, 4550022], 3); end; procedure TBigIntPolynomialTestCase.TestCreateDegreeOne; begin TestCreateWithDegree([4007], 0); end; procedure TBigIntPolynomialTestCase.TestCreateDegreeZero; begin TestCreateWithDegree([], -1); end; procedure TBigIntPolynomialTestCase.TestCreateDegreeZeroTrim; begin TestCreateWithDegree([0], -1); end; procedure TBigIntPolynomialTestCase.TestEqual; var a, b: TBigIntPolynomial; begin a := TBigIntPolynomial.Create([10, 7, 5, 1034]); b := TBigIntPolynomial.Create([10, 7, 5, 1034]); AssertTrue('Polynomials are not equal.', a = b); end; procedure TBigIntPolynomialTestCase.TestUnequalSameLength; var a, b: TBigIntPolynomial; begin a := TBigIntPolynomial.Create([103, 7, 5, 10]); b := TBigIntPolynomial.Create([1034, 7, 5, 10]); AssertTrue('Polynomials are equal.', a <> b); end; procedure TBigIntPolynomialTestCase.TestUnequalDifferentLength; var a, b: TBigIntPolynomial; begin a := TBigIntPolynomial.Create([40000, 10, 7, 5, 1034]); b := TBigIntPolynomial.Create([10, 7, 5, 1034]); AssertTrue('Polynomials are equal.', a <> b); end; procedure TBigIntPolynomialTestCase.TestTrimLeadingZeros; var a, b: TBigIntPolynomial; begin a := TBigIntPolynomial.Create([10, 7, 5, 1034, 0, 0]); b := TBigIntPolynomial.Create([10, 7, 5, 1034]); AssertTrue('Polynomials are not equal.', a = b); end; procedure TBigIntPolynomialTestCase.TestBisectionRootIsolation; var a: TBigIntPolynomial; begin // y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112) // = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000 a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]); Fail('Not implemented'); end; initialization RegisterTest(TBigIntPolynomialTestCase); end.