Compare commits

..

8 Commits

16 changed files with 1313 additions and 643 deletions

View File

@ -157,6 +157,14 @@
<Filename Value="UCommon.pas"/>
<IsPartOfProject Value="True"/>
</Unit>
<Unit>
<Filename Value="UMultiIndexEnumerator.pas"/>
<IsPartOfProject Value="True"/>
</Unit>
<Unit>
<Filename Value="UBinomialCoefficients.pas"/>
<IsPartOfProject Value="True"/>
</Unit>
</Units>
</ProjectOptions>
<CompilerOptions>

View File

@ -42,7 +42,7 @@ The algorithm processes the numbers in the middle line and looks for additional
### Day 4: Scratchcards
:mag_right: Puzzle: <https://adventofcode.com/2023/day/4>, :white_check_mark: Solver: [`UScratchcards.pas`](solvers/UScratchcards.pas)
:mag_right: Puzzle: <https://adventofcode.com/2023/day/4>, :white_check_mark: Solver: [`UScratchCards.pas`](solvers/UScratchCards.pas)
For part 1, the algorithm simply matches winning numbers against numbers we have, and multiplies the current line result by two for every match (except the first).
@ -152,7 +152,7 @@ The main modification to the classic algorithm here is that in order to calculat
:star: :mag_right: Puzzle: <https://adventofcode.com/2023/day/18>, :white_check_mark: Solver: [`ULavaductLagoon.pas`](solvers/ULavaductLagoon.pas)
My first algorithm for part 1 was a simply tracking the trench in a top-view two-dimensional array and then flood-filling the outside of the trench to determine the full area. It worked, but there were two problems. Firstly, I had to iteratre over the list of digs twice in order to avoid resizing the array frequently. Secondly, the performance complexity of the algorthim depends largely on the size of the array, i.e. the length of the individual digs, so obviously it did not scale for part 2.
My first algorithm for part 1 was a simply tracking the trench in a top-view two-dimensional array and then flood-filling the outside of the trench to determine the full area. It worked, but there were two problems. Firstly, I had to iteratre over the list of digs twice in order to avoid resizing the array frequently. Secondly, the performance complexity of the algorthim depends largely on the size of the array, i.e. the length of the individual digs, so obviously it did not scale for part2.
The final algorithm, uses the fact that either all right turns are convex or concave, locally, while all left turns are the opposite. That means that two consecutive turns in the same direction (a U-turn) enclose a rectangular area that is either inside or outside of the trench depending only on the direction of the two turns. So the algorthim simply collapses all U-turns it encounters into a straight dig instruction, thereby cutting of an area that is either added to or subtracted from the running area count.
@ -166,24 +166,6 @@ Since the workflows are at the beginning of the puzzle input, each machine part
For part two, a virtual "multi machine part" that represents all possible values of ratings, modelled as four integer intervals, is sent through the same workflow graph. Each time one of rules is applied to a multi machine part, it is split into up to three new multi machine parts that continue to go through the workflows on separate paths. This is similar to [my day 5 solution](#day-5-if-you-give-a-seed-a-fertilizer).
### Day 20: Pulse Propagation
:mag_right: Puzzle: <https://adventofcode.com/2023/day/20>, :white_check_mark: Solver: [`UPulsePropagation.pas`](solvers/UPulsePropagation.pas)
For part 1, it's quite straight forward to model and simulate the module pulses for the first 1000 button pushes.
Part 2 seemed pretty daunting at first (and probably is quite difficult in the general case), but investigating the graph of the module connection reveals pretty quickly that the modules form a set of four independent counters of button pushes modulo different reset values, such that `rx` receives one low pulse if and only if all four counters reset as a result of the same button push. Clearly, the first time this happens is when the button is pushed a number of times equal to the product of the four counters' reset values.
### Day 21: Step Counter
:mag_right: Puzzle: <https://adventofcode.com/2023/day/21>, :white_check_mark: Solver: [`UStepCounter.pas`](solvers/UStepCounter.pas)
Part 1 can comfortably be solved with a flood-fill algorithm. Counting every other traversed plot will emulate the trivial backtracking the elf can do, without having to do the actual backtracking in the algorithm.
For part 2, I noticed that the map is sparse enough so that all plots that are theoretically in range are also actually in reachable. This means that the algorithm only has to count empty plots within specific, different, disjoint areas on the map, and multiply them by the number of occurences of this piece of the map within the full shape of reachable plots. See [`UStepCounter.pas`, line 174](solvers/UStepCounter.pas#L174) for details.
Interestingly, this is the only puzzle besides [day 20](#day-20-pulse-propagation), which had no part 2 example, where my implementation cannot solve the part 2 examples, since the example map is not sparse and their step limits do not fit the algorithm's requirements.
### Day 22: Sand Slabs
:mag_right: Puzzle: <https://adventofcode.com/2023/day/22>, :white_check_mark: Solver: [`USandSlabs.pas`](solvers/USandSlabs.pas)
@ -194,14 +176,6 @@ For part 1, if a brick lands on a single supporting brick, that brick below cann
For part 2, given a starting brick, the algorithm makes use of the tracked vertical connections to find a group of bricks supported by it, such that all supports of the bricks in the group are also in the group. This group of bricks would fall if the starting brick was disintegrated, so its size is counted for each possible starting brick.
### Day 23: A Long Walk
:mag_right: Puzzle: <https://adventofcode.com/2023/day/23>, :white_check_mark: Solver: [`ULongWalk.pas`](solvers/ULongWalk.pas)
There is a nice *O(|V| * |E|)* algorithm for the maximum flow in a directed acyclic graph, if a topological ordering of the vertices is know. It's relatively easy to parse the edges ("paths") of the long walk from the input such that a topological ordering results, by adding the vertices ("crossings") only after all in-edges have been found.
For part 2, I believe there is no polynomial algorithm known for the general case, and even with the given restraints I was unable to come up with one. Instead, my solution uses a depth-first search to parse all options in the network. This was feasible for the given input with some smart data structures to limit iterations of the vertex or edge lists, and with shortcuts to determine early if a search branch can be abandoned.
### Day 24: Never Tell Me the Odds
:star: :mag_right: Puzzle: <https://adventofcode.com/2023/day/24>, :white_check_mark: Solver: [`UNeverTellMeTheOdds.pas`](solvers/UNeverTellMeTheOdds.pas)

96
UBinomialCoefficients.pas Normal file
View File

@ -0,0 +1,96 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
}
unit UBinomialCoefficients;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, Generics.Collections;
type
TCardinalArray = array of Cardinal;
TCardinalArrays = specialize TList<TCardinalArray>;
{ TBinomialCoefficientCache }
TBinomialCoefficientCache = class
private
FCache: TCardinalArrays;
procedure AddRow;
public
constructor Create;
destructor Destroy; override;
// Returns N choose K, with N >= K >= 0.
function Get(const AN, AK: Cardinal): Cardinal;
// Returns the number of cached rows C = N + 1, where N is the highest from previously queried "N choose K". The
// actual number of cached binomial coefficient values is C * (C + 1) / 2.
function GetCachedRowsCount: Cardinal;
end;
implementation
{ TBinomialCoefficientCache }
procedure TBinomialCoefficientCache.AddRow;
var
row: TCardinalArray;
i: Cardinal;
begin
SetLength(row, FCache.Count + 1);
row[0] := 1;
if FCache.Count > 0 then
begin
row[FCache.Count] := 1;
for i := 1 to FCache.Count - 1 do
row[i] := FCache.Last[i - 1] + FCache.Last[i];
end;
FCache.Add(row);
end;
constructor TBinomialCoefficientCache.Create;
begin
FCache := TCardinalArrays.Create;
end;
destructor TBinomialCoefficientCache.Destroy;
begin
FCache.Free;
inherited Destroy;
end;
function TBinomialCoefficientCache.Get(const AN, AK: Cardinal): Cardinal;
var
i: Cardinal;
begin
if AN < AK then
raise ERangeError.Create('Cannot calculate binomial coefficient "n choose k" with k larger than n.');
for i := FCache.Count to AN do
AddRow;
Result := FCache[AN][AK];
end;
function TBinomialCoefficientCache.GetCachedRowsCount: Cardinal;
begin
Result := FCache.Count;
end;
end.

View File

@ -41,7 +41,6 @@ const
type
TIntegerList = specialize TList<Integer>;
TPoints = specialize TList<TPoint>;
implementation

160
UMultiIndexEnumerator.pas Normal file
View File

@ -0,0 +1,160 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
}
unit UMultiIndexEnumerator;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils;
type
TIndexArray = array of Integer;
TIndexValidationResult = (ivrValid, ivrSkip, ivrBacktrack);
TEnumerableMultiIndexStrategy = class;
{ TMultiIndexEnumerator }
TMultiIndexEnumerator = class(TInterfacedObject, specialize IEnumerator<TIndexArray>)
private
FStrategy: TEnumerableMultiIndexStrategy;
FCurrent: TIndexArray;
FMustInit: Boolean;
function UpdateArray(const AInit: Boolean): Boolean;
public
constructor Create(const AStrategy: TEnumerableMultiIndexStrategy);
function GetCurrent: TIndexArray;
function MoveNext: Boolean;
procedure Reset;
property Current: TIndexArray read GetCurrent;
end;
{ TEnumerableMultiIndexStrategy }
TEnumerableMultiIndexStrategy = class(TInterfacedObject, specialize IEnumerable<TIndexArray>)
public
function GetEnumerator: specialize IEnumerator<TIndexArray>;
function GetCardinality: Integer; virtual; abstract;
function TryGetStartIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer;
out AStartIndexValue: Integer): Boolean; virtual; abstract;
function ValidateIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer):
TIndexValidationResult; virtual; abstract;
end;
implementation
{ TMultiIndexEnumerator }
function TMultiIndexEnumerator.UpdateArray(const AInit: Boolean): Boolean;
var
i, initialized: Integer;
r: TIndexValidationResult;
begin
if AInit then
begin
i := 0;
initialized := -1;
end
else begin
i := Length(FCurrent) - 1;
initialized := i;
end;
while i < Length(FCurrent) do
begin
if initialized < i then
begin
// Checks whether start index value can be set, and backtracks or aborts if not.
if not FStrategy.TryGetStartIndexValue(FCurrent, i, FCurrent[i]) then
if i > 0 then
begin
Dec(i);
Continue;
end
else begin
Result := False;
Exit;
end
end
else
// Sets next candidate for current index value.
Inc(FCurrent[i]);
// Checks if current index value is valid, and increases it until it is, or backtracks or aborts if so indicated.
while True do
begin
r := FStrategy.ValidateIndexValue(FCurrent, i);
case r of
ivrValid: begin
initialized := i;
Inc(i);
Break;
end;
ivrSkip:
Inc(FCurrent[i]);
ivrBacktrack:
if i > 0 then
begin
Dec(i);
Break;
end
else begin
Result := False;
Exit;
end;
end;
end;
end;
Result := True;
end;
constructor TMultiIndexEnumerator.Create(const AStrategy: TEnumerableMultiIndexStrategy);
begin
FStrategy := AStrategy;
SetLength(FCurrent, FStrategy.GetCardinality);
Reset;
end;
function TMultiIndexEnumerator.GetCurrent: TIndexArray;
begin
Result := FCurrent;
end;
function TMultiIndexEnumerator.MoveNext: Boolean;
begin
Result := UpdateArray(FMustInit);
FMustInit := False;
end;
procedure TMultiIndexEnumerator.Reset;
begin
FMustInit := True;
end;
{ TEnumerableMultiIndexStrategy }
function TEnumerableMultiIndexStrategy.GetEnumerator: specialize IEnumerator<TIndexArray>;
begin
Result := TMultiIndexEnumerator.Create(Self);
end;
end.

View File

@ -22,7 +22,7 @@ unit UCosmicExpansion;
interface
uses
Classes, SysUtils, Generics.Collections, Math, USolver, UCommon;
Classes, SysUtils, Generics.Collections, Math, USolver;
const
CGalaxyChar = '#';
@ -36,8 +36,8 @@ type
TCosmicExpansion = class(TSolver)
private
FExpansionFactor: Integer;
FColumnExpansion, FRowExpansion: TIntegerList;
FGalaxies: TPoints;
FColumnExpansion, FRowExpansion: specialize TList<Integer>;
FGalaxies: specialize TList<TPoint>;
procedure InitColumnExpansion(const ASize: Integer);
public
constructor Create(const AExpansionFactor: Integer = 999999);
@ -67,9 +67,9 @@ end;
constructor TCosmicExpansion.Create(const AExpansionFactor: Integer);
begin
FExpansionFactor := AExpansionFactor;
FColumnExpansion := TIntegerList.Create;
FRowExpansion := TIntegerList.Create;
FGalaxies := TPoints.Create;
FColumnExpansion := specialize TList<Integer>.Create;
FRowExpansion := specialize TList<Integer>.Create;
FGalaxies := specialize TList<TPoint>.Create;
end;
destructor TCosmicExpansion.Destroy;

View File

@ -1,6 +1,6 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2023 Stefan Müller
Copyright (C) 2023-2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
@ -21,28 +21,128 @@ unit UHotSprings;
interface
// TODO: Remove this and the ifdefs.
{$define debug}
uses
Classes, SysUtils, Generics.Collections, USolver;
Classes, SysUtils, Math, Generics.Collections, USolver, UCommon, UMultiIndexEnumerator, UBinomialCoefficients;
const
COperationalChar = '.';
CDamagedChar = '#';
CWildcardChar = '?';
COperationalPatternChars = [COperationalChar, CWildcardChar];
CDamagedPatternChars = [CDamagedChar, CWildcardChar];
CPart2Repetition = 5;
type
TValidationLengths = array of array of Integer;
// TODO: TIntegerArray probably not needed.
TIntegerArray = array of Integer;
{ TDamage }
TDamage = record
Start, Length, CharsRemaining: Integer;
end;
TDamages = specialize TList<TDamage>;
// TODO: Instead of using TDamagesBlocks, "block" should be a record of a string and its associated list TDamages.
TDamagesBlocks = specialize TObjectList<TDamages>;
{ TValidationToDamageAssignments }
TValidationToDamageAssignments = class(TEnumerableMultiIndexStrategy)
private
FValidation: TIntegerList;
FValidationLengths: TValidationLengths;
FDamages: TDamages;
FValidationStartIndex, FValidationStopIndex: Integer;
// Calculates "span", the length of all damages for this validation number combined.
function CalcValidationSpan(constref ACurrentIndexArray: TIndexArray; const ALastDamageIndex, AValidationNumber:
Integer): Integer;
public
constructor Create(constref AValidation: TIntegerList; constref AValidationLengths: TValidationLengths;
constref ADamages: TDamages; const AStartIndex, AStopIndex: Integer);
function GetCardinality: Integer; override;
function TryGetStartIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer;
out AStartIndexValue: Integer): Boolean; override;
function ValidateIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer):
TIndexValidationResult; override;
end;
{ TValidationPositionInfo }
TValidationPositionInfo = record
ValidationIndex, MinStart, MaxStart: Integer;
end;
TValidationPositionInfos = specialize TList<TValidationPositionInfo>;
{ TValidationPositionOffsets }
TValidationPositionOffsets = class(TEnumerableMultiIndexStrategy)
private
FValidation: TIntegerList;
FPositionInfos: TValidationPositionInfos;
public
constructor Create(constref AValidation: TIntegerList; constref APositionInfos: TValidationPositionInfos);
function GetCardinality: Integer; override;
function TryGetStartIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer;
out AStartIndexValue: Integer): Boolean; override;
function ValidateIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex: Integer):
TIndexValidationResult; override;
end;
{ TConditionRecord }
TConditionRecord = class
private
FBinomialCoefficients: TBinomialCoefficientCache;
FValidation: TIntegerList;
// List of non-empty, maximum-length parts of the pattern without operational springs ("blocks").
FBlocks: TStringList;
// Array 'a' of accumulated validation series lengths. 'a[i, j]' denotes the combined length of consecutive
// validation numbers from 'FValidation[i]' to 'FValidation[j - 1]' with a single space in between each pair of
// them.
FValidationLengths: TValidationLengths;
// Array 'a' of minimum indices 'a[i]', such that all remaining validation numbers starting at index 'a[i] - 1'
// cannot fit into the remaining blocks starting at 'FBlocks[i]'.
FMinIndices: TIntegerArray;
// List 'a' of lists of damages in a block. Each list of damages 'a[i]' contains exactly one entry for each block of
// consecutive damages characters in the i-th block.
// For example, if the pattern is '?#.??##?#?..??', then 'FDamagesBlocks' would have 3 entries, which are lists of
// 1, 2, and 0 damages, respectively.
FDamagesBlocks: TDamagesBlocks;
procedure InitValidationLengths;
procedure InitMinIndices;
function CalcCombinations(constref AIndices: TIntegerArray): Int64;
function CalcCombinationsBlock(const ABlock: string; constref ADamages: TDamages; const AStartIndex, AStopIndex:
Integer): Int64;
function CalcCombinationsBlockSingleValidation(const ABlockLength: Integer; constref ADamages: TDamages;
const AIndex: Integer): Int64;
function CalcCombinationsBlockMultiValidations(const ABlockLength: Integer; constref ADamages: TDamages;
constref AIndices: TIndexArray; const AStartIndex, AStopIndex: Integer): Int64;
function CalcCombinationsBlockAssignedValidations(const ABlockLength: Integer; constref APositionInfos:
TValidationPositionInfos; constref AOffsets: TIndexArray; const AStartIndex, AStopIndex: Integer): Int64;
function CalcCombinationsWildcardSequence(const ASequenceLength, AStartIndex, AStopIndex: Integer): Int64;
function ParseDamages(const ABlock: string): TDamages;
public
property Blocks: TStringList read FBlocks;
property Validation: TIntegerList read FValidation;
constructor Create(constref ABinomialCoefficients: TBinomialCoefficientCache);
destructor Destroy; override;
// Adds all non-empty, maximum-length parts of the pattern without operational springs ("blocks").
procedure AddBlocks(const APattern: string);
function GenerateBlockAssignments: Int64;
end;
{ THotSprings }
THotSprings = class(TSolver)
private
FValidation: specialize TList<Integer>;
FSpringPattern: string;
procedure ExtendArrangement(const AArrangement: string; const ARemainingFreeOperationalCount, ACurrentValidationIndex:
Integer);
function TryAppendOperationalChar(var AArrangement: string): Boolean;
function TryAppendValidationBlock(var AArrangement: string; const ALength: Integer): Boolean;
// Keeping the binomial coefficients calculator here so it can be shared for all lines.
FBinomialCoefficients: TBinomialCoefficientCache;
// TODO: Remove FDebugIndex.
FDebugIndex: Integer;
public
constructor Create;
destructor Destroy; override;
@ -54,99 +154,604 @@ type
implementation
{ THotSprings }
{ TValidationToDamageAssignments }
procedure THotSprings.ExtendArrangement(const AArrangement: string; const ARemainingFreeOperationalCount,
ACurrentValidationIndex: Integer);
function TValidationToDamageAssignments.CalcValidationSpan(constref ACurrentIndexArray: TIndexArray;
const ALastDamageIndex, AValidationNumber: Integer): Integer;
var
match: Boolean;
temp: string;
spanStart: Integer;
begin
if Length(AArrangement) = Length(FSpringPattern) then
Inc(FPart1)
else begin
temp := AArrangement;
// Tries to append a dot (operational) to the current arrangement.
if (ARemainingFreeOperationalCount > 0) and TryAppendOperationalChar(temp) then
begin
ExtendArrangement(temp, ARemainingFreeOperationalCount - 1, ACurrentValidationIndex);
end;
// Tries to append the current validation block (damaged) to the current arrangement.
if ACurrentValidationIndex < FValidation.Count then
begin
temp := AArrangement;
match := TryAppendValidationBlock(temp, FValidation[ACurrentValidationIndex]);
// ... and the mandatory dot after the block, if it is not the last block.
if match
and (ACurrentValidationIndex < FValidation.Count - 1)
and not TryAppendOperationalChar(temp) then
match := False;
if match then
ExtendArrangement(temp, ARemainingFreeOperationalCount, ACurrentValidationIndex + 1);
end;
end;
spanStart := ALastDamageIndex;
while (spanStart > 0) and (ACurrentIndexArray[spanStart - 1] = AValidationNumber) do
Dec(spanStart);
Result := FDamages[ALastDamageIndex].Length;
if spanStart < ALastDamageIndex then
Inc(Result, FDamages[ALastDamageIndex].Start - FDamages[spanStart].Start);
end;
function THotSprings.TryAppendOperationalChar(var AArrangement: string): Boolean;
constructor TValidationToDamageAssignments.Create(constref AValidation: TIntegerList; constref AValidationLengths:
TValidationLengths; constref ADamages: TDamages; const AStartIndex, AStopIndex: Integer);
begin
if FSpringPattern[Length(AArrangement) + 1] in COperationalPatternChars then
begin
AArrangement := AArrangement + COperationalChar;
Result := True;
end
else
Result := False;
FValidation := AValidation;
FValidationLengths := AValidationLengths;
FDamages := ADamages;
FValidationStartIndex := AStartIndex;
FValidationStopIndex := AStopIndex;
end;
function THotSprings.TryAppendValidationBlock(var AArrangement: string; const ALength: Integer): Boolean;
var
i, len: Integer;
function TValidationToDamageAssignments.GetCardinality: Integer;
begin
Result := FDamages.Count;
end;
function TValidationToDamageAssignments.TryGetStartIndexValue(constref ACurrentIndexArray: TIndexArray;
const ACurrentIndex: Integer; out AStartIndexValue: Integer): Boolean;
begin
Result := True;
len := Length(AArrangement);
for i := 1 to ALength do
if ACurrentIndex > 0 then
AStartIndexValue := ACurrentIndexArray[ACurrentIndex - 1]
else
AStartIndexValue := FValidationStartIndex;
end;
function TValidationToDamageAssignments.ValidateIndexValue(constref ACurrentIndexArray: TIndexArray;
const ACurrentIndex: Integer): TIndexValidationResult;
var
i, prev, firstSkip: Integer;
begin
i := ACurrentIndexArray[ACurrentIndex];
if i > FValidationStopIndex then
begin
if FSpringPattern[len + i] in CDamagedPatternChars then
AArrangement := AArrangement + CDamagedChar
Result := ivrBacktrack;
Exit;
end;
// Checks if there is enough space after this damage for remaining validation numbers.
if (i < FValidationStopIndex)
and (FValidationLengths[i + 1, FValidationStopIndex + 1] + 1 > FDamages[ACurrentIndex].CharsRemaining) then
begin
Result := ivrSkip;
Exit;
end;
// Checks if there is enough space before this damage for previous validation numbers.
if (FValidationStartIndex < i)
and (FValidationLengths[FValidationStartIndex, i] + 1 >= FDamages[ACurrentIndex].Start) then
begin
Result := ivrBacktrack;
Exit;
end;
// Checks if there is enough space between previous and this damage for skipped validation numbers.
if ACurrentIndex > 0 then
begin
prev := ACurrentIndex - 1;
firstSkip := ACurrentIndexArray[prev] + 1;
if (firstSkip < i) and (FValidationLengths[firstSkip, i] + 2 > FDamages[ACurrentIndex].Start - FDamages[prev].Start - FDamages[prev].Length) then
begin
Result := ivrBacktrack;
Exit;
end;
end;
// Checks if span is small enough to fit within this validation number.
if FValidation[i] < CalcValidationSpan(ACurrentIndexArray, ACurrentIndex, i) then
begin
Result := ivrSkip;
Exit;
end;
Result := ivrValid;
end;
{ TValidationPositionOffsets }
constructor TValidationPositionOffsets.Create(constref AValidation: TIntegerList; constref APositionInfos:
TValidationPositionInfos);
begin
FValidation := AValidation;
FPositionInfos := APositionInfos;
end;
function TValidationPositionOffsets.GetCardinality: Integer;
begin
Result := FPositionInfos.Count;
end;
function TValidationPositionOffsets.TryGetStartIndexValue(constref ACurrentIndexArray: TIndexArray;
const ACurrentIndex: Integer; out AStartIndexValue: Integer): Boolean;
var
info: TValidationPositionInfo;
begin
info := FPositionInfos[ACurrentIndex];
// Calculates start value such that the validation number just includes MinEnd.
//AStartIndexValue := info.MinEnd - FValidation[info.ValidationIndex] + 1;
AStartIndexValue := info.MinStart;
// Adjusts start value to avoid overlap of this validation number with the previous one (the one from previous
// position info).
if ACurrentIndex > 0 then
AStartIndexValue := Max(AStartIndexValue,
ACurrentIndexArray[ACurrentIndex - 1] + FValidation[FPositionInfos[ACurrentIndex - 1].ValidationIndex] + 1);
Result := True;
end;
function TValidationPositionOffsets.ValidateIndexValue(constref ACurrentIndexArray: TIndexArray; const ACurrentIndex:
Integer): TIndexValidationResult;
begin
if ACurrentIndexArray[ACurrentIndex] <= FPositionInfos[ACurrentIndex].MaxStart then
Result := ivrValid
else
Result := ivrBacktrack;
end;
{ TConditionRecord }
procedure TConditionRecord.InitValidationLengths;
var
i, j: Integer;
begin
SetLength(FValidationLengths, FValidation.Count + 1, FValidation.Count + 1);
for i := 0 to FValidation.Count do
begin
FValidationLengths[i, i] := 0;
for j := i + 1 to FValidation.Count do
if FValidationLengths[i, j - 1] <> 0 then
FValidationLengths[i, j] := FValidationLengths[i, j - 1] + FValidation[j - 1] + 1
else
FValidationLengths[i, j] := FValidationLengths[i, j - 1] + FValidation[j - 1]
end;
end;
procedure TConditionRecord.InitMinIndices;
var
i, j, patternsLength: Integer;
begin
SetLength(FMinIndices, FBlocks.Count - 1);
patternsLength := Length(FBlocks[FBlocks.Count - 1]);
j := FValidation.Count;
for i := FBlocks.Count - 2 downto 0 do
begin
while (j >= 0) and (FValidationLengths[j, FValidation.Count] <= patternsLength) do
Dec(j);
FMinIndices[i] := j + 1;
patternsLength := patternsLength + 1 + Length(FBlocks[i]);
end;
end;
function TConditionRecord.CalcCombinations(constref AIndices: TIntegerArray): Int64;
var
i, j: Integer;
// TODO: Remove r.
r: Int64;
begin
{$ifdef debug}
for i in AIndices do
Write(i, ' ');
WriteLn;
{$endif}
Result := 1;
i := 0;
while (Result > 0) and (i < FBlocks.Count) do
begin
if FDamagesBlocks[i].Count > 0 then
r := CalcCombinationsBlock(FBlocks[i], FDamagesBlocks[i], AIndices[i], AIndices[i + 1] - 1)
else begin
Result := False;
Break;
{$ifdef debug}
Write(' ', FBlocks[i], ' ');
for j := AIndices[i] to AIndices[i + 1] - 1 do
Write(FValidation[j], ' ');
WriteLn;
Write(' count/space/freedoms: ');
{$endif}
r := CalcCombinationsWildcardSequence(Length(FBlocks[i]), AIndices[i], AIndices[i + 1] - 1);
{$ifdef debug}
WriteLn(' result: ', r);
{$endif}
end;
{$ifdef debug}
WriteLn(' Result: ', r);
{$endif}
Result := Result * r;
Inc(i);
end;
end;
function TConditionRecord.CalcCombinationsBlock(const ABlock: string; constref ADamages: TDamages; const AStartIndex,
AStopIndex: Integer): Int64;
var
i, j, k: Integer;
indices: TIndexArray;
validationToDamageAssignments: TValidationToDamageAssignments;
begin
{$ifdef debug}
Write(' ', ABlock, ' ');
for i := AStartIndex to AStopIndex do
Write(FValidation[i], ' ');
WriteLn;
{$endif}
// No validation number assigned to this block.
if AStartIndex > AStopIndex then
begin
if ADamages.Count = 0 then
Result := 1
else
Result := 0;
end
// One validation number assigned to this block.
else if AStartIndex = AStopIndex then
Result := CalcCombinationsBlockSingleValidation(Length(ABlock), ADamages, AStartIndex)
// Multiple validation numbers assigned to this block.
else begin
{$ifdef debug}
Write(' min before: ');
for i := AStartIndex to AStopIndex do
Write(FValidationLengths[AStartIndex, i + 1] - FValidation[i], ' ');
WriteLn;
Write(' min after: ');
for i := AStartIndex to AStopIndex do
Write(FValidationLengths[i, AStopIndex + 1] - FValidation[i], ' ');
WriteLn;
for i := 0 to ADamages.Count - 1 do
begin
WriteLn(' damage: start ',ADamages[i].Start, ', length ', ADamages[i].Length, ', remain ', ADamages[i].CharsRemaining);
Write(' ');
for j := AStartIndex to AStopIndex do
// Enough space before damage for the other validation numbers?
if (FValidationLengths[AStartIndex, j + 1] - FValidation[j] < ADamages[i].Start)
// Enough space after damage for the other validation numbers?
and (FValidationLengths[j, AStopIndex + 1] - FValidation[j] <= ADamages[i].CharsRemaining)
// Damage itself small enough for this validation number?
and (FValidation[j] >= ADamages[i].Length) then
Write(j - AStartIndex, ' ');
WriteLn;
end;
{$endif}
Result := 0;
// Assigns validation numbers to specific damages.
validationToDamageAssignments := TValidationToDamageAssignments.Create(FValidation, FValidationLengths, ADamages,
AStartIndex, AStopIndex);
{$ifdef debug}
WriteLn(' validation numbers (indices) per damages:');
{$endif}
for indices in validationToDamageAssignments do
begin
{$ifdef debug}
Write(' ');
for i := 0 to ADamages.Count - 1 do
Write(FValidation[indices[i]], ' ');
Write('( ');
for i := 0 to ADamages.Count - 1 do
Write(indices[i] - AStartIndex, ' ');
WriteLn(')');
{$endif}
Result := Result + CalcCombinationsBlockMultiValidations(Length(ABlock), ADamages, indices, AStartIndex, AStopIndex);
end;
validationToDamageAssignments.Free;
end;
end;
function TConditionRecord.CalcCombinationsBlockSingleValidation(const ABlockLength: Integer; constref ADamages:
TDamages; const AIndex: Integer): Int64;
var
combinedDamagesLength: Integer;
begin
if ABlockLength < FValidation[AIndex] then
Result := 0
else if ADamages.Count = 0 then
Result := ABlockLength - FValidation[AIndex] + 1
else begin
combinedDamagesLength := ADamages.Last.Start + ADamages.Last.Length - ADamages.First.Start;
if FValidation[AIndex] < combinedDamagesLength then
Result := 0
else begin
Result := Min(Min(Min(
ADamages.First.Start,
FValidation[AIndex] - combinedDamagesLength + 1),
ABlockLength - FValidation[AIndex] + 1),
ADamages.Last.CharsRemaining + 1);
end;
end;
end;
function TConditionRecord.CalcCombinationsBlockMultiValidations(const ABlockLength: Integer; constref ADamages:
TDamages; constref AIndices: TIndexArray; const AStartIndex, AStopIndex: Integer): Int64;
var
i, high: Integer;
position: TValidationPositionInfo;
positions: TValidationPositionInfos;
validationPositionOffsets: TValidationPositionOffsets;
offsets: TIndexArray;
begin
positions := TValidationPositionInfos.Create;
high := Length(AIndices) - 1;
// Initializes first info record.
position.ValidationIndex := AIndices[0];
position.MaxStart := ADamages[0].Start;
position.MinStart := 1;
for i := 1 to high do
if AIndices[i] <> position.ValidationIndex then
begin
// Finalizes current info record.
position.MaxStart := Min(position.MaxStart, ADamages[i].Start - 1 - FValidation[position.ValidationIndex]);
position.MinStart := Max(position.MinStart,
ADamages[i - 1].Start + ADamages[i - 1].Length - FValidation[position.ValidationIndex]);
positions.Add(position);
// Initializes next info record.
position.ValidationIndex := AIndices[i];
position.MaxStart := ADamages[i].Start;
position.MinStart := position.MinStart + FValidationLengths[AIndices[i - 1], AIndices[i]] + 1; //FValidation[position.ValidationIndex - 1] + 1;
end;
// Finalizes last info record.
position.MaxStart := Min(position.MaxStart, ABlockLength + 1 - FValidation[position.ValidationIndex]);
position.MinStart := Max(position.MinStart,
ADamages[high].Start + ADamages[high].Length - FValidation[position.ValidationIndex]);
positions.Add(position);
{$ifdef debug}
WriteLn(' validation position infos');
for position in positions do
WriteLn(' ', position.ValidationIndex, ' ', position.MinStart, ' ', position.MaxStart);
WriteLn(' offsets');
{$endif}
Result := 0;
validationPositionOffsets := TValidationPositionOffsets.Create(FValidation, positions);
for offsets in validationPositionOffsets do
Result := Result + CalcCombinationsBlockAssignedValidations(ABlockLength, positions, offsets, AStartIndex, AStopIndex);
validationPositionOffsets.Free;
positions.Free;
end;
function TConditionRecord.CalcCombinationsBlockAssignedValidations(const ABlockLength: Integer; constref APositionInfos:
TValidationPositionInfos; constref AOffsets: TIndexArray; const AStartIndex, AStopIndex: Integer): Int64;
var
i, space: Integer;
begin
{$ifdef debug}
Write(' ');
for i in AOffsets do
Write(i, ' ');
Write(' count/space/freedoms: ');
{$endif}
space := AOffsets[0] - 2;
Result := CalcCombinationsWildcardSequence(space, AStartIndex, APositionInfos[0].ValidationIndex - 1);
if Result = 0 then begin
{$ifdef debug}
WriteLn(' result: ', Result);
{$endif}
Exit;
end;
for i := 0 to APositionInfos.Count - 2 do begin
space := AOffsets[i + 1] - AOffsets[i] - FValidation[APositionInfos[i].ValidationIndex] - 2;
Result := Result * CalcCombinationsWildcardSequence(space, APositionInfos[i].ValidationIndex + 1, APositionInfos[i + 1].ValidationIndex - 1);
if Result = 0 then begin
{$ifdef debug}
WriteLn(' result: ', Result);
{$endif}
Exit;
end;
end;
space := ABlockLength - AOffsets[APositionInfos.Count - 1] - FValidation[APositionInfos.Last.ValidationIndex];
Result := Result * CalcCombinationsWildcardSequence(space, APositionInfos.Last.ValidationIndex + 1, AStopIndex);
{$ifdef debug}
WriteLn(' result: ', Result);
{$endif}
end;
function TConditionRecord.CalcCombinationsWildcardSequence(const ASequenceLength, AStartIndex, AStopIndex: Integer):
Int64;
var
count, freedoms: Integer;
begin
if AStartIndex < AStopIndex + 1 then
begin
count := AStopIndex + 1 - AStartIndex;
freedoms := ASequenceLength - FValidationLengths[AStartIndex, AStopIndex + 1];
{$ifdef debug}
Write(count, '/', ASequenceLength, '/', freedoms, ' ');
{$endif}
if freedoms >= 0 then
Result := FBinomialCoefficients.Get(count + freedoms, freedoms)
else
Result := 0;
end
else begin
Result := 1;
{$ifdef debug}
Write('X ');
{$endif}
end;
end;
function TConditionRecord.ParseDamages(const ABlock: string): TDamages;
var
i, len: Integer;
damage: TDamage;
begin
Result := TDamages.Create;
damage.Length := 0;
len := Length(ABlock);
for i := 1 to len do
// The pattern must only contain damage and wildcard characters here.
if ABlock[i] = CDamagedChar then
begin
if damage.Length = 0 then
damage.Start := i;
Inc(damage.Length);
end
else if damage.Length > 0 then
begin
damage.CharsRemaining := len - damage.Start - damage.Length + 1;
Result.Add(damage);
damage.Length := 0;
end;
if damage.Length > 0 then
begin
damage.CharsRemaining := 0;
Result.Add(damage);
end;
end;
constructor TConditionRecord.Create(constref ABinomialCoefficients: TBinomialCoefficientCache);
begin
FBinomialCoefficients := ABinomialCoefficients;
FBlocks := TStringList.Create;
FValidation := TIntegerList.Create;
FDamagesBlocks := TDamagesBlocks.Create;
end;
destructor TConditionRecord.Destroy;
begin
FBlocks.Free;
FValidation.Free;
FDamagesBlocks.Free;
inherited Destroy;
end;
procedure TConditionRecord.AddBlocks(const APattern: string);
var
split: TStringArray;
part: string;
begin
split := APattern.Split([COperationalChar]);
for part in split do
if Length(part) > 0 then
begin
FBlocks.Add(part);
FDamagesBlocks.Add(ParseDamages(part));
end;
end;
function TConditionRecord.GenerateBlockAssignments: Int64;
var
indices: array of Integer;
i, j, k, high: Integer;
// TODO: Remove r, count, misses.
r: Int64;
count, misses: Integer;
begin
count := 0;
misses := 0;
// Each loop (each call to 'CalcCombinations') represents an independent set of arrangements, defined by 'indices',
// where specific validation numbers are assigned to specific block patterns.
//
// Here, 'indices[i]' denotes the index + 1 of the last validation number assigned to 'FBlockPattern[i]', and the
// index of the first validation number in 'FValidation' assigned to 'FBlockPattern[i + 1]'. If two consecutive values
// in 'indices' are the same, then the block in between has no numbers assigned to it.
//
// Note that 'indices[0] = 0' and 'indices[FBlockPatterns.Count] = FValidation.Count' are constant. Having these two
// numbers in the array simplifies the code a bit.
InitValidationLengths;
//FPatternLengths := CalcPatternLengths;
InitMinIndices;
SetLength(indices, FBlocks.Count + 1);
high := Length(indices) - 2;
indices[0] := 0;
indices[high + 1] := FValidation.Count;
// TODO: Use TMultiIndexEnumerator for this.
Result := 0;
k := 0;
repeat
i := k + 1;
while i <= high do
begin
indices[i] := Max(indices[i - 1], FMinIndices[i - 1]);
while FValidationLengths[indices[i - 1], indices[i]] > Length(FBlocks[i - 1]) do
begin
Dec(i);
Inc(indices[i]);
end;
Inc(i);
end;
Inc(count);
r := CalcCombinations(indices);
if r = 0 then
Inc(misses);
Result := Result + r;
k := high;
while (k > 0)
and ((indices[k] = FValidation.Count)
or (FValidationLengths[indices[k - 1], indices[k] + 1] > Length(FBlocks[k - 1]))) do
Dec(k);
Inc(indices[k]);
until k = 0;
WriteLn(' missed: ', misses, '/', count);
end;
{ THotSprings }
constructor THotSprings.Create;
begin
FValidation := specialize TList<Integer>.Create;
FDebugIndex := 0;
FBinomialCoefficients := TBinomialCoefficientCache.Create;
end;
destructor THotSprings.Destroy;
begin
FValidation.Free;
FBinomialCoefficients.Free;
inherited Destroy;
end;
procedure THotSprings.ProcessDataLine(const ALine: string);
var
split: TStringArray;
i, val, maxFreeOperationalCount: Integer;
conditionRecord1, conditionRecord2: TConditionRecord;
mainSplit, split: TStringArray;
part, unfolded: string;
i: Integer;
begin
FValidation.Clear;
split := ALine.Split([' ', ',']);
FSpringPattern := split[0];
{$ifdef debug}
WriteLn(ALine);
WriteLn;
{$endif}
maxFreeOperationalCount := Length(FSpringPattern) - Length(split) + 2;
for i := 1 to Length(split) - 1 do
begin
val := StrToInt(split[i]);
FValidation.Add(val);
Dec(maxFreeOperationalCount, val);
end;
conditionRecord1 := TConditionRecord.Create(FBinomialCoefficients);
conditionRecord2 := TConditionRecord.Create(FBinomialCoefficients);
ExtendArrangement('', maxFreeOperationalCount, 0);
mainSplit := ALine.Split([' ']);
// Adds blocks for part 1.
conditionRecord1.AddBlocks(mainSplit[0]);
// Adds blocks for part 2.
unfolded := mainSplit[0];
for i := 2 to CPart2Repetition do
unfolded := unfolded + CWildcardChar + mainSplit[0];
conditionRecord2.AddBlocks(unfolded);
// Adds validation numbers.
split := mainSplit[1].Split([',']);
for part in split do
conditionRecord1.Validation.Add(StrToInt(part));
for i := 1 to CPart2Repetition do
conditionRecord2.Validation.AddRange(conditionRecord1.Validation);
WriteLn(FDebugIndex + 1);
Inc(FDebugIndex);
FPart1 := FPart1 + conditionRecord1.GenerateBlockAssignments;
FPart2 := FPart2 + conditionRecord2.GenerateBlockAssignments;
conditionRecord1.Free;
conditionRecord2.Free;
{$ifdef debug}
WriteLn('------------------------');
WriteLn;
{$endif}
end;
procedure THotSprings.Finish;

View File

@ -25,23 +25,20 @@ uses
Classes, SysUtils, Generics.Collections, USolver, UCommon;
type
TCrossing = class;
TPoints = specialize TList<TPoint>;
TPathSelectionState = (pssNone, pssIncluded, pssExcluded);
TCrossing = class;
{ TPath }
TPath = class
private
FStart, FEnd: TCrossing;
FEnd: TCrossing;
FLength: Integer;
FSelected: TPathSelectionState;
public
property StartCrossing: TCrossing read FStart;
property EndCrossing: TCrossing read FEnd;
property Length: Integer read FLength;
property Selected: TPathSelectionState read FSelected write FSelected;
constructor Create(const ALength: Integer; const AStart, AEnd: TCrossing);
constructor Create(const ALength: Integer; const AEnd: TCrossing);
end;
TPaths = specialize TObjectList<TPath>;
@ -60,51 +57,20 @@ type
TCrossing = class
private
FPosition: TPoint;
FOutPaths, FPaths: TPaths;
FOutPaths: TPaths;
FDistance: Integer;
FNotExcludedDegree: Integer;
public
property Position: TPoint read FPosition;
property OutPaths: TPaths read FOutPaths;
property Paths: TPaths read FPaths;
property Distance: Integer read FDistance write FDistance;
property NotExcludedDegree: Integer read FNotExcludedDegree write FNotExcludedDegree;
function CalcNextPickIndex(const AMinIndex: Integer): Integer;
constructor Create(constref APosition: TPoint);
destructor Destroy; override;
procedure AddOutPath(const AOutPath: TPath);
procedure AddInPath(const AInPath: TPath);
end;
TCrossings = specialize TObjectList<TCrossing>;
TCrossingStack = specialize TStack<TCrossing>;
TPathChoiceResult = (pcrContinue, pcrTargetReached, pcrTargetUnreachable, pcrNoMinimum);
{ TPathChoice }
TPathChoice = class
private
FPrevious: TPathChoice;
FPickIndex: Integer;
FPick: TPath;
FEndCrossing: TCrossing;
FAutoExcludes: TPaths;
FExcludeCost: Int64;
FIncludeCost: Int64;
public
property PickIndex: Integer read FPickIndex;
property EndCrossing: TCrossing read FEndCrossing;
property IncludeCost: Int64 read FIncludeCost;
function Apply(constref ATargetCrossing: TCrossing; const AExcludeCostLimit: Int64): TPathChoiceResult;
procedure Revert;
constructor Create(const AStartCrossing: TCrossing);
constructor Create(const APickIndex: Integer; const APrevious: TPathChoice = nil);
destructor Destroy; override;
end;
TPathChoiceStack = specialize TStack<TPathChoice>;
{ TLongWalk }
TLongWalk = class(TSolver)
@ -112,15 +78,12 @@ type
FLines: TStringList;
FPaths: TPaths;
FCrossings, FWaitingForOtherInPath: TCrossings;
FPathLengthSum: Int64;
FStart: TCrossing;
function GetPosition(constref APoint: TPoint): Char;
procedure ProcessPaths;
procedure StepPath(const AStartPositionQueue: TPathStartQueue);
function FindOrCreateCrossing(constref APosition: TPoint; const AStartPositionQueue: TPathStartQueue): TCrossing;
// Treats the graph as directed for part 1.
procedure FindLongestPath;
// Treats the graph as undirected for part 2.
procedure FindLongestPathIgnoreSlopes;
public
constructor Create;
destructor Destroy; override;
@ -140,163 +103,30 @@ implementation
{ TPath }
constructor TPath.Create(const ALength: Integer; const AStart, AEnd: TCrossing);
constructor TPath.Create(const ALength: Integer; const AEnd: TCrossing);
begin
FLength := ALength;
FStart := AStart;
FEnd := AEnd;
FSelected := pssNone;
end;
{ TCrossing }
function TCrossing.CalcNextPickIndex(const AMinIndex: Integer): Integer;
begin
Result := AMinIndex;
while (Result < FPaths.Count) and (FPaths[Result].Selected <> pssNone) do
Inc(Result);
end;
constructor TCrossing.Create(constref APosition: TPoint);
begin
FPosition := APosition;
FOutPaths := TPaths.Create(False);
FPaths := TPaths.Create(False);
FDistance := 0;
FNotExcludedDegree := 0;
end;
destructor TCrossing.Destroy;
begin
FOutPaths.Free;
FPaths.Free;
inherited Destroy;
end;
procedure TCrossing.AddOutPath(const AOutPath: TPath);
begin
FOutPaths.Add(AOutPath);
FPaths.Add(AOutPath);
Inc(FNotExcludedDegree);
end;
procedure TCrossing.AddInPath(const AInPath: TPath);
begin
FPaths.Add(AInPath);
Inc(FNotExcludedDegree);
end;
{ TPathChoice }
function TPathChoice.Apply(constref ATargetCrossing: TCrossing; const AExcludeCostLimit: Int64): TPathChoiceResult;
var
path: TPath;
excludeStack: TCrossingStack;
crossing, otherCrossing: TCrossing;
begin
Result := pcrContinue;
// Includes the selected path (edge) and checks whether target has been reached.
FPick.Selected := pssIncluded;
if FEndCrossing = ATargetCrossing then
Result := pcrTargetReached
else if FPrevious <> nil then
begin
// If the target has not been reached, starts at the starting crossing (which is the same as FPRevious.EndCrossing)
// and recursively excludes other connected paths (edges).
excludeStack := TCrossingStack.Create;
excludeStack.Push(FPrevious.EndCrossing);
while excludeStack.Count > 0 do
begin
crossing := excludeStack.Pop;
for path in crossing.Paths do
if path.Selected = pssNone then
begin
// Checks whether the path (edge) to the target crossing has been excluded and if so exits. The input data
// should be such that there is only one such path.
// The last crossing is always an end, never a start of a path (edge).
if path.EndCrossing = ATargetCrossing then
begin
Result := pcrTargetUnreachable;
excludeStack.Free;
Exit;
end
else begin
// Excludes the path (edge).
path.Selected := pssExcluded;
crossing.NotExcludedDegree := crossing.NotExcludedDegree - 1;
FAutoExcludes.Add(path);
FExcludeCost := FExcludeCost + path.Length;
// Checks if this choice is worse than the current best.
if FExcludeCost >= AExcludeCostLimit then
begin
Result := pcrNoMinimum;
excludeStack.Free;
Exit;
end;
// Finds the crossing on the other side, updates it, and possibly pushes it for recursion.
if crossing = path.StartCrossing then
otherCrossing := path.EndCrossing
else
otherCrossing := path.StartCrossing;
otherCrossing.NotExcludedDegree := otherCrossing.NotExcludedDegree - 1;
if otherCrossing.NotExcludedDegree < 2 then
excludeStack.Push(otherCrossing);
end;
end;
end;
excludeStack.Free;
end;
end;
procedure TPathChoice.Revert;
var
path: TPath;
begin
FPick.Selected := pssNone;
for path in FAutoExcludes do begin
path.Selected := pssNone;
path.StartCrossing.NotExcludedDegree := path.StartCrossing.NotExcludedDegree + 1;
path.EndCrossing.NotExcludedDegree := path.EndCrossing.NotExcludedDegree + 1;
end;
end;
constructor TPathChoice.Create(const AStartCrossing: TCrossing);
begin
FPrevious := nil;
FPickIndex := 0;
FPick := AStartCrossing.Paths[FPickIndex];
FEndCrossing := FPick.EndCrossing;
FExcludeCost := 0;
FIncludeCost := FPick.FLength;
FAutoExcludes := TPaths.Create(False);
end;
constructor TPathChoice.Create(const APickIndex: Integer; const APrevious: TPathChoice);
begin
FPrevious := APrevious;
FPickIndex := APickIndex;
FPick := FPrevious.EndCrossing.Paths[FPickIndex];
if FPick.StartCrossing = FPrevious.EndCrossing then
FEndCrossing := FPick.EndCrossing
else
FEndCrossing := FPick.StartCrossing;
FExcludeCost := FPrevious.FExcludeCost;
FIncludeCost := FPrevious.FIncludeCost + FPick.FLength;
FAutoExcludes := TPaths.Create(False);
end;
destructor TPathChoice.Destroy;
begin
FAutoExcludes.Free;
inherited Destroy;
end;
{ TLongWalk }
@ -308,17 +138,17 @@ end;
procedure TLongWalk.ProcessPaths;
var
queue: TPathStartQueue;
stack: TPathStartQueue;
pathStart: TPathStart;
begin
queue := TPathStartQueue.Create;
pathStart.Crossing := FCrossings.First;
pathStart.Position := FCrossings.First.Position;
stack := TPathStartQueue.Create;
pathStart.Position := FStart.Position;
pathStart.Crossing := FStart;
pathStart.ReverseDirection := CDirectionUp;
queue.Enqueue(pathStart);
while queue.Count > 0 do
StepPath(queue);
queue.Free;
stack.Enqueue(pathStart);
while stack.Count > 0 do
StepPath(stack);
stack.Free;
end;
procedure TLongWalk.StepPath(const AStartPositionQueue: TPathStartQueue);
@ -333,8 +163,8 @@ var
path: TPath;
begin
start := AStartPositionQueue.Dequeue;
len := 0;
if start.Crossing <> FCrossings.First then
len := 1;
if start.Crossing <> FStart then
Inc(len);
oneMore := False;
stop := False;
@ -362,11 +192,9 @@ begin
until stop;
crossing := FindOrCreateCrossing(start.Position, AStartPositionQueue);
path := TPath.Create(len, start.Crossing, crossing);
FPathLengthSum := FPathLengthSum + path.FLength;
path := TPath.Create(len, crossing);
FPaths.Add(path);
start.Crossing.AddOutPath(path);
crossing.AddInPath(path);
end;
// Crossing with multiple (two) entries will only be added to FCrossings once both in-paths have been processed. This
@ -429,8 +257,6 @@ begin
end
end;
// In a directed graph with a topological ordering on the crossings (vertices), the maximum distance can be computed
// simply by traversing the crossings in that order and calculating the maximum locally.
procedure TLongWalk.FindLongestPath;
var
crossing: TCrossing;
@ -440,82 +266,17 @@ begin
begin
for path in crossing.OutPaths do
if path.EndCrossing.Distance < crossing.Distance + path.Length then
path.EndCrossing.Distance := crossing.Distance + path.Length + 1;
path.EndCrossing.Distance := crossing.Distance + path.Length;
end;
FPart1 := FCrossings.Last.Distance;
end;
// For the undirected graph, we are running a DFS for the second to last crossing (vertex) with backtracking to find the
// minimum of excluded crossings and paths.
procedure TLongWalk.FindLongestPathIgnoreSlopes;
var
pickIndex: Integer;
choice: TPathChoice;
stack: TPathChoiceStack;
minExcludeCost, newExcludeCost: Int64;
begin
minExcludeCost := FPathLengthSum + FCrossings.Count - 1 - FPart1;
// Prepares the first pick, which is the only path connected to the first crossing.
stack := TPathChoiceStack.Create;
choice := TPathChoice.Create(FCrossings.First);
choice.Apply(FCrossings.Last, minExcludeCost);
stack.Push(choice);
// Runs a DFS for last crossing with backtracking, trying to find the minimum cost of excluded paths (i.e. edges).
pickIndex := -1;
while stack.Count > 0 do
begin
// Chooses next path.
pickIndex := stack.Peek.EndCrossing.CalcNextPickIndex(pickIndex + 1);
if pickIndex < stack.Peek.EndCrossing.Paths.Count then
begin
choice := TPathChoice.Create(pickIndex, stack.Peek);
case choice.Apply(FCrossings.Last, minExcludeCost) of
// Continues DFS, target has not yet been reached.
pcrContinue: begin
stack.Push(choice);
pickIndex := -1;
Continue;
end;
// Updates minimum and backtracks last choice, after target has been reached.
pcrTargetReached: begin
// Calculates new exclude cost based on path length sum and the choice's include cost. This effectively
// accounts for the "undecided" paths (edges) as well. Note that this does not actually need the choice's
// exclude costs, these are only required for the early exit in TPathChoice.Apply().
newExcludeCost := FCrossings.Count - stack.Count - 2 + FPathLengthSum - choice.IncludeCost;
if minExcludeCost > newExcludeCost then
minExcludeCost := newExcludeCost;
choice.Revert;
choice.Free;
end;
// Backtracks last choice, after target has been excluded or exclude costs ran over the current best.
pcrTargetUnreachable, pcrNoMinimum: begin
choice.Revert;
choice.Free;
end;
end;
end
else begin
choice := stack.Pop;
pickIndex := choice.PickIndex;
choice.Revert;
choice.Free;
end;
end;
stack.Free;
FPart2 := FPathLengthSum - minExcludeCost + FCrossings.Count - 1;
end;
constructor TLongWalk.Create;
begin
FLines := TStringList.Create;
FPaths := TPaths.Create;
FCrossings := TCrossings.Create;
FWaitingForOtherInPath := TCrossings.Create(False);
FPathLengthSum := 0;
end;
destructor TLongWalk.Destroy;
@ -530,7 +291,10 @@ end;
procedure TLongWalk.ProcessDataLine(const ALine: string);
begin
if FLines.Count = 0 then
FCrossings.Add(TCrossing.Create(Point(ALine.IndexOf(CPathChar) + 1, 0)));
begin
FStart := TCrossing.Create(Point(ALine.IndexOf(CPathChar) + 1, 0));
FCrossings.Add(FStart);
end;
FLines.Add(ALine);
end;
@ -538,7 +302,6 @@ procedure TLongWalk.Finish;
begin
ProcessPaths;
FindLongestPath;
FindLongestPathIgnoreSlopes;
end;
function TLongWalk.GetDataFileName: string;

View File

@ -1,6 +1,6 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2023-2024 Stefan Müller
Copyright (C) 2023 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
@ -22,7 +22,7 @@ unit UPulsePropagation;
interface
uses
Classes, SysUtils, Generics.Collections, USolver;
Classes, SysUtils, Generics.Collections, Math, USolver;
type
TModule = class;
@ -49,12 +49,12 @@ type
public
property Name: string read FName;
property OutputNames: TStringList read FOutputNames;
property Outputs: TModules read FOutputs;
constructor Create(const AName: string);
destructor Destroy; override;
procedure AddInput(const AInput: TModule); virtual;
procedure AddOutput(const AOutput: TModule); virtual;
function ReceivePulse(const ASender: TModule; const AIsHigh: Boolean): TPulses; virtual; abstract;
function IsOff: Boolean; virtual;
end;
{ TBroadcasterModule }
@ -71,29 +71,31 @@ type
FState: Boolean;
public
function ReceivePulse(const ASender: TModule; const AIsHigh: Boolean): TPulses; override;
function IsOff: Boolean; override;
end;
{ TConjunctionInputBuffer }
{ TConjectionBuffer }
TConjunctionInputBuffer = record
TConjectionBuffer = record
Input: TModule;
LastState: Boolean;
end;
TConjunctionInputBuffers = specialize TList<TConjunctionInputBuffer>;
TConjectionBuffers = specialize TList<TConjectionBuffer>;
{ TConjunctionModule }
TConjunctionModule = class(TModule)
private
FInputBuffers: TConjunctionInputBuffers;
FInputBuffers: TConjectionBuffers;
procedure UpdateInputBuffer(constref AInput: TModule; const AState: Boolean);
function AreAllBuffersHigh: Boolean;
function AreAllBuffersSame(const AIsHigh: Boolean): Boolean;
public
constructor Create(const AName: string);
destructor Destroy; override;
procedure AddInput(const AInput: TModule); override;
function ReceivePulse(const ASender: TModule; const AIsHigh: Boolean): TPulses; override;
function IsOff: Boolean; override;
end;
{ TEndpointModule }
@ -109,6 +111,8 @@ type
LowCount, HighCount: Integer;
end;
TButtonResults = specialize TList<TButtonResult>;
{ TPulsePropagation }
TPulsePropagation = class(TSolver)
@ -117,7 +121,7 @@ type
FBroadcaster: TModule;
procedure UpdateModuleConnections;
function PushButton: TButtonResult;
function CalcCounterTarget(const AFirstFlipFlop: TModule): Int64;
function AreAllModulesOff: Boolean;
public
constructor Create;
destructor Destroy; override;
@ -176,6 +180,11 @@ begin
FOutputs.Add(AOutput);
end;
function TModule.IsOff: Boolean;
begin
Result := True;
end;
{ TBroadcasterModule }
function TBroadcasterModule.ReceivePulse(const ASender: TModule; const AIsHigh: Boolean): TPulses;
@ -195,12 +204,17 @@ begin
end;
end;
function TFlipFlopModule.IsOff: Boolean;
begin
Result := not FState;
end;
{ TConjunctionModule }
procedure TConjunctionModule.UpdateInputBuffer(constref AInput: TModule; const AState: Boolean);
var
i: Integer;
buffer: TConjunctionInputBuffer;
buffer: TConjectionBuffer;
begin
for i := 0 to FInputBuffers.Count - 1 do
if FInputBuffers[i].Input = AInput then
@ -212,13 +226,13 @@ begin
end;
end;
function TConjunctionModule.AreAllBuffersHigh: Boolean;
function TConjunctionModule.AreAllBuffersSame(const AIsHigh: Boolean): Boolean;
var
buffer: TConjunctionInputBuffer;
buffer: TConjectionBuffer;
begin
Result := True;
for buffer in FInputBuffers do
if not buffer.LastState then
if buffer.LastState <> AIsHigh then
begin
Result := False;
Exit;
@ -228,7 +242,7 @@ end;
constructor TConjunctionModule.Create(const AName: string);
begin
inherited Create(AName);
FInputBuffers := TConjunctionInputBuffers.Create;
FInputBuffers := TConjectionBuffers.Create;
end;
destructor TConjunctionModule.Destroy;
@ -239,7 +253,7 @@ end;
procedure TConjunctionModule.AddInput(const AInput: TModule);
var
buffer: TConjunctionInputBuffer;
buffer: TConjectionBuffer;
begin
buffer.Input := AInput;
buffer.LastState := False;
@ -249,7 +263,12 @@ end;
function TConjunctionModule.ReceivePulse(const ASender: TModule; const AIsHigh: Boolean): TPulses;
begin
UpdateInputBuffer(ASender, AIsHigh);
Result := CreatePulsesToOutputs(not AreAllBuffersHigh);
Result := CreatePulsesToOutputs(not AreAllBuffersSame(True));
end;
function TConjunctionModule.IsOff: Boolean;
begin
Result := AreAllBuffersSame(False);
end;
{ TEndpointModule }
@ -323,39 +342,17 @@ begin
queue.Free;
end;
function TPulsePropagation.CalcCounterTarget(const AFirstFlipFlop: TModule): Int64;
function TPulsePropagation.AreAllModulesOff: Boolean;
var
binDigit: Int64;
current, next: TModule;
i: Integer;
module: TModule;
begin
Result := 0;
binDigit := 1;
current := AFirstFlipFlop;
while True do
begin
if current.Outputs.Count = 1 then
Result := True;
for module in FModules do
if not module.IsOff then
begin
current := current.Outputs.First;
if current is TConjunctionModule then
begin
Result := Result + binDigit;
Break;
end;
end
else begin
Result := Result + binDigit;
i := 0;
repeat
if i = current.Outputs.Count then
Exit;
next := current.Outputs[i];
Inc(i);
until next is TFlipFlopModule;
current := next;
Result := False;
Exit;
end;
binDigit := binDigit << 1;
end;
end;
constructor TPulsePropagation.Create;
@ -395,26 +392,42 @@ end;
procedure TPulsePropagation.Finish;
var
result, accumulated: TButtonResult;
i: Integer;
module: TModule;
results: TButtonResults;
finalResult: TButtonResult;
cycles, remainder, i, j, max: Integer;
begin
UpdateModuleConnections;
accumulated.LowCount := 0;
accumulated.HighCount := 0;
for i := 1 to CButtonPushes do
// The pulse counts for the full puzzle input repeat themselves in a very specific way, but the system state does not.
// This indicates there is a better solution for this problem.
// TODO: See if there is a better solution based on the repeating patterns in the pulse counts.
results := TButtonResults.Create;
repeat
results.Add(PushButton);
until AreAllModulesOff or (results.Count >= CButtonPushes);
DivMod(CButtonPushes, results.Count, cycles, remainder);
finalResult.LowCount := 0;
finalResult.HighCount := 0;
max := results.Count - 1;
for j := 0 to 1 do
begin
result := PushButton;
Inc(accumulated.LowCount, result.LowCount);
Inc(accumulated.HighCount, result.HighCount);
for i := 0 to max do
begin
Inc(finalResult.LowCount, results[i].LowCount);
Inc(finalResult.HighCount, results[i].HighCount);
end;
if j = 0 then
begin
finalResult.LowCount := finalResult.LowCount * cycles;
finalResult.HighCount := finalResult.HighCount * cycles;
max := remainder - 1;
end;
end;
FPart1 := accumulated.LowCount * accumulated.HighCount;
results.Free;
FPart2 := 1;
for module in FBroadcaster.Outputs do
FPart2 := FPart2 * CalcCounterTarget(module);
FPart1 := finalResult.LowCount * finalResult.HighCount;
end;
function TPulsePropagation.GetDataFileName: string;

View File

@ -22,25 +22,23 @@ unit UStepCounter;
interface
uses
Classes, SysUtils, USolver, UCommon;
Classes, SysUtils, Generics.Collections, USolver, UCommon;
type
TPoints = specialize TList<TPoint>;
{ TStepCounter }
TStepCounter = class(TSolver)
private
FLines: TStringList;
FWidth, FHeight, FMaxSteps1, FMaxSteps2: Integer;
FWidth, FHeight, FMaxSteps: Integer;
function FindStart: TPoint;
function IsInBounds(constref APoint: TPoint): Boolean;
function GetPosition(constref APoint: TPoint): Char;
procedure SetPosition(constref APoint: TPoint; const AValue: Char);
procedure PrepareMap;
function DoSteps(const AMaxSteps: Integer): Int64;
function CalcTargetPlotsOnInfiniteMap(const AMaxSteps: Integer): Int64;
public
constructor Create(const AMaxStepsPart1: Integer = 64; const AMaxStepsPart2: Integer = 26501365);
constructor Create(const AMaxSteps: Integer = 64);
destructor Destroy; override;
procedure ProcessDataLine(const ALine: string); override;
procedure Finish; override;
@ -51,7 +49,6 @@ type
const
CStartChar = 'S';
CPlotChar = '.';
CRockChar = '#';
CTraversedChar = '+';
implementation
@ -91,37 +88,40 @@ begin
FLines[APoint.Y] := s;
end;
procedure TStepCounter.PrepareMap;
var
i, j: Integer;
constructor TStepCounter.Create(const AMaxSteps: Integer);
begin
for i := 2 to FWidth - 1 do
for j := 1 to FHeight - 2 do
if (FLines[j][i] <> CRockChar) and (FLines[j - 1][i] = CRockChar) and (FLines[j + 1][i] = CRockChar)
and (FLines[j][i - 1] = CRockChar) and (FLines[j][i + 1] = CRockChar) then
SetPosition(Point(i, j), CRockChar);
FMaxSteps := AMaxSteps;
FLines := TStringList.Create;
end;
function TStepCounter.DoSteps(const AMaxSteps: Integer): Int64;
destructor TStepCounter.Destroy;
begin
FLines.Free;
inherited Destroy;
end;
procedure TStepCounter.ProcessDataLine(const ALine: string);
begin
FLines.Add(ALine);
end;
procedure TStepCounter.Finish;
var
mod2, currentStep: Integer;
currentStep: Integer;
currentPlots, nextPlots, temp: TPoints;
plot, next: TPoint;
pdirection: PPoint;
begin
FWidth := Length(FLines[0]);
FHeight := FLines.Count;
currentStep := 0;
currentPlots := TPoints.Create;
currentPlots.Add(FindStart);
Inc(FPart1);
nextPlots := TPoints.Create;
// Counts the start if max steps is even.
mod2 := AMaxSteps and 1;
if mod2 = 0 then
Result := 1
else
Result := 0;
while currentStep < AMaxSteps do
while currentStep < FMaxSteps do
begin
for plot in currentPlots do
for pdirection in CPCardinalDirections do
@ -140,142 +140,15 @@ begin
nextPlots := temp;
Inc(currentStep);
// Positions where the number of steps are even or odd (for even or odd AMaxSteps, respectively) can be reached with
// trivial backtracking, so they count.
if currentStep and 1 = mod2 then
Inc(Result, currentPlots.Count);
// Positions where the number of steps are even can be reached with trivial backtracking, so they count.
if currentStep mod 2 = 0 then
Inc(FPart1, currentPlots.Count);
end;
currentPlots.Free;
nextPlots.Free;
end;
function TStepCounter.CalcTargetPlotsOnInfiniteMap(const AMaxSteps: Integer): Int64;
var
half, k, i, j: Integer;
factor1, factor1B, factor2, factor4A: Int64;
begin
Result := 0;
// Asserts square input map with odd size.
if (FWidth <> FHeight) or (FWidth and 1 = 0) then
Exit;
// Asserts half map size is odd.
half := FWidth shr 1;
if half and 1 = 0 then
Exit;
// Asserts that there is an even k such that maximum number of steps is equal to k + 1/2 times the map size.
// k is the number of visited repeated maps, not counting the start map, when taking all steps in a straight line in
// any of the four directions.
k := (AMaxSteps - half) div FWidth;
if (k and 1 = 0) and (AMaxSteps <> k * FWidth + half) then
Exit;
// Assuming that the rocks on the map are sparse enough, and the central vertical and horizontal lines are empty,
// every free plot with odd (Manhattan) distance (not larger than AMaxSteps) to the start plot (because of trivial
// backtracking) on the maps is reachable, essentially formning a 45-degree rotated square shape centered on the start
// plot.
// Inside this "diamond" shape, 2k(k - 1) + 1 (k-th centered square number) copies of the map are traversed fully.
// However, there are two different types of these. (k - 1)^2 are traversed like the start map, where all plots with
// odd distance to the center are reachable (type 1), and k^2 are traversed such that all plots within odd distance to
// the center are reachable (type 2).
// On each of the corners of this "diamond" shape, there is one map traversed fully except for two adjacent of its
// corner triangles (type 3).
// On each of the edges of this "diamond" shape, there are k maps where only the corner triangle facing towards the
// shapes center is traversed (type 4), and k - 1 maps that are fully traversed except for the corner triangle facing
// away from the shapes center (type 5).
// The four different versions of type 4 do not overlap within a map, so they can be counted together (type 4A).
// Types 1, 3, and 5 share patterns, so they can also be counted together, but the parts of the patterns have
// different counts. Each corner (type 1A) is traversed (k - 1)^2 times for type 1, 2 times for type 3, and 3(k - 1)
// for type 5, that is (k - 1)^2 + 3k - 1 in total. The center (type 1B) is traversed (k - 1)^2 times for type 1, 4
// times for type 3, and 4(k - 1) for type 5, that is (k - 1)^2 + 4k.
// Equivalently, instead type 1 is traversed (k - 1)^2 + 3k - 1 times and type 1B is traversed k + 1 times.
// Types example for k = 2, half = 5:
// 4 5 2 4A
// ........... .....O.O.O. O.O.O.O.O.O O.O.O.O.O.O
// ........... ....O.O.O.O .O.O.O.O.O. .O.O...O.O.
// ........... ...O.O.O.O. O.O.O.O.O.O O.O.....O.O
// ......#.... ..O.O.#.O.O .O.O.O#O.O. .O....#..O.
// ...#....... .O.#.O.O.O. O.O#O.O.O.O O..#......O
// ........... O.O.O.O.O.O .O.O.O.O.O. ...........
// ....#..#..O .O.O#O.#.O. O.O.#.O.#.O O...#..#..O
// .........O. O.O.O.O.O.O .O.O.O.O.O. .O.......O.
// ........O.O .O.O.O.O.O. O.O.O.O.O.O O.O.....O.O
// .......O.O. O.O.O.O.O.O .O.O.O.O.O. .O.O...O.O.
// ......O.O.O .O.O.O.O.O. O.O.O.O.O.O O.O.O.O.O.O
//
// 3 2 1 1A 1B
// .....O.O.O. O.O.O.O.O.O .O.O.O.O.O. .O.O...O.O. .....O.....
// ....O.O.O.O .O.O.O.O.O. O.O.O.O.O.O O.O.....O.O ....O.O....
// ...O.O.O.O. O.O.O.O.O.O .O.O.O.O.O. .O.......O. ...O.O.O...
// ..O.O.#.O.O .O.O.O#O.O. O.O.O.#.O.O O.....#...O ..O.O.#.O..
// .O.#.O.O.O. O.O#O.O.O.O .O.#.O.O.O. ...#....... .O.#.O.O.O.
// O.O.O.O.O.O .O.O.O.O.O. O.O.OSO.O.O ........... O.O.O.O.O.O
// .O.O#O.#.O. O.O.#.O.#.O .O.O#O.#.O. ....#..#... .O.O#O.#.O.
// ..O.O.O.O.O .O.O.O.O.O. O.O.O.O.O.O O.........O ..O.O.O.O..
// ...O.O.O.O. O.O.O.O.O.O .O.O.O.O.O. .O.......O. ...O.O.O...
// ....O.O.O.O .O.O.O.O.O. O.O.O.O.O.O O.O.....O.O ....O.O....
// .....O.O.O. O.O.O.O.O.O .O.O.O.O.O. .O.O...O.O. .....O.....
// Sets factors, aka number of occurrences, for each type.
factor1 := (k - 1) * (k - 1) + 3 * k - 1;
factor1B := k + 1;
factor2 := k * k;
factor4A := k;
for i := 0 to FWidth - 1 do
for j := 1 to FWidth do
if FLines[i][j] <> CRockChar then
if (i and 1) = (j and 1) then
begin
// Counts types 1.
Result := Result + factor1;
// Counts types 1B.
if not ((i + j <= half) or (i + j > FWidth + half) or (i - j >= half) or (j - i > half + 1)) then
Result := Result + factor1B;
end
else begin
// Counts types 2.
Result := Result + factor2;
// Counts types 4A.
if (i + j <= half) or (i + j > FWidth + half) or (i - j >= half) or (j - i > half + 1) then
Result := Result + factor4A;
end
end;
constructor TStepCounter.Create(const AMaxStepsPart1: Integer; const AMaxStepsPart2: Integer);
begin
FMaxSteps1 := AMaxStepsPart1;
FMaxSteps2 := AMaxStepsPart2;
FLines := TStringList.Create;
end;
destructor TStepCounter.Destroy;
begin
FLines.Free;
inherited Destroy;
end;
procedure TStepCounter.ProcessDataLine(const ALine: string);
begin
FLines.Add(ALine);
end;
procedure TStepCounter.Finish;
begin
FWidth := Length(FLines[0]);
FHeight := FLines.Count;
PrepareMap;
FPart2 := CalcTargetPlotsOnInfiniteMap(FMaxSteps2);
FPart1 := DoSteps(FMaxSteps1);
end;
function TStepCounter.GetDataFileName: string;
begin
Result := 'step_counter.txt';

View File

@ -152,6 +152,10 @@
<Filename Value="USnowverloadTestCases.pas"/>
<IsPartOfProject Value="True"/>
</Unit>
<Unit>
<Filename Value="UBinomialCoefficientsTestCases.pas"/>
<IsPartOfProject Value="True"/>
</Unit>
</Units>
</ProjectOptions>
<CompilerOptions>

View File

@ -10,7 +10,7 @@ uses
UFloorWillBeLavaTestCases, UClumsyCrucibleTestCases, ULavaductLagoonTestCases, UAplentyTestCases,
UPulsePropagationTestCases, UStepCounterTestCases, USandSlabsTestCases, ULongWalkTestCases,
UNeverTellMeTheOddsTestCases, USnowverloadTestCases, UBigIntTestCases, UPolynomialTestCases,
UPolynomialRootsTestCases;
UPolynomialRootsTestCases, UBinomialCoefficientsTestCases;
{$R *.res}

View File

@ -0,0 +1,138 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2024 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
}
unit UBinomialCoefficientsTestCases;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, fpcunit, testregistry, UBinomialCoefficients;
type
{ TBinomialCoefficientsTestCase }
TBinomialCoefficientsTestCase = class(TTestCase)
private
FBinomialCoefficientCache: TBinomialCoefficientCache;
procedure RunRangeError;
procedure AssertEqualsCalculation(const AN, AK, AExpected: Cardinal);
procedure AssertEqualsCachedRowsCount(const AExpected: Cardinal);
protected
procedure SetUp; override;
procedure TearDown; override;
published
procedure TestZeroChooseZero;
procedure TestNChooseZero;
procedure TestNChooseN;
procedure TestNChooseK;
procedure TestCombined;
procedure TestFullRow;
procedure TestRangeError;
end;
implementation
{ TBinomialCoefficientsTestCase }
procedure TBinomialCoefficientsTestCase.RunRangeError;
begin
FBinomialCoefficientCache.Get(1, 5);
end;
procedure TBinomialCoefficientsTestCase.AssertEqualsCalculation(const AN, AK, AExpected: Cardinal);
begin
AssertEquals('Unexpected calculation result', AExpected, FBinomialCoefficientCache.Get(AN, AK));
end;
procedure TBinomialCoefficientsTestCase.AssertEqualsCachedRowsCount(const AExpected: Cardinal);
begin
AssertEquals('Unexpected cached rows count', AExpected, FBinomialCoefficientCache.GetCachedRowsCount);
end;
procedure TBinomialCoefficientsTestCase.SetUp;
begin
FBinomialCoefficientCache := TBinomialCoefficientCache.Create;
end;
procedure TBinomialCoefficientsTestCase.TearDown;
begin
FBinomialCoefficientCache.Free;
end;
procedure TBinomialCoefficientsTestCase.TestZeroChooseZero;
begin
AssertEqualsCalculation(0, 0, 1);
AssertEqualsCachedRowsCount(1);
end;
procedure TBinomialCoefficientsTestCase.TestNChooseZero;
begin
AssertEqualsCalculation(15, 0, 1);
AssertEqualsCachedRowsCount(16);
end;
procedure TBinomialCoefficientsTestCase.TestNChooseN;
begin
AssertEqualsCalculation(11, 11, 1);
AssertEqualsCachedRowsCount(12);
end;
procedure TBinomialCoefficientsTestCase.TestNChooseK;
begin
AssertEqualsCalculation(8, 3, 56);
AssertEqualsCachedRowsCount(9);
end;
procedure TBinomialCoefficientsTestCase.TestCombined;
begin
AssertEqualsCalculation(5, 1, 5);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(8, 4, 70);
AssertEqualsCachedRowsCount(9);
AssertEqualsCalculation(3, 1, 3);
AssertEqualsCachedRowsCount(9);
end;
procedure TBinomialCoefficientsTestCase.TestFullRow;
begin
AssertEqualsCalculation(5, 0, 1);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(5, 1, 5);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(5, 2, 10);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(5, 3, 10);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(5, 4, 5);
AssertEqualsCachedRowsCount(6);
AssertEqualsCalculation(5, 5, 1);
AssertEqualsCachedRowsCount(6);
end;
procedure TBinomialCoefficientsTestCase.TestRangeError;
begin
AssertException(ERangeError, @RunRangeError);
end;
initialization
RegisterTest('Helper', TBinomialCoefficientsTestCase);
end.

View File

@ -26,6 +26,16 @@ uses
type
{ THotSpringsFullDataTestCase }
THotSpringsFullDataTestCase = class(TEngineBaseTest)
protected
function CreateSolver: ISolver; override;
published
procedure TestPart1;
procedure TestPart2;
end;
{ THotSpringsExampleTestCase }
THotSpringsExampleTestCase = class(TExampleEngineBaseTest)
@ -33,6 +43,7 @@ type
function CreateSolver: ISolver; override;
published
procedure TestPart1;
procedure TestPart2;
end;
{ THotSpringsTestCase }
@ -40,18 +51,29 @@ type
THotSpringsTestCase = class(TSolverTestCase)
protected
function CreateSolver: ISolver; override;
procedure TestSingleLine(const ALine: string; const AValue: Integer);
procedure TestSingleLine(const ALine: string);
published
procedure TestExampleLine1;
procedure TestExampleLine2;
procedure TestExampleLine3;
procedure TestExampleLine4;
procedure TestExampleLine5;
procedure TestExampleLine6;
procedure TestExampleLine1Part1;
procedure TestExampleLine2Part1;
procedure TestExampleLine3Part1;
procedure TestExampleLine4Part1;
procedure TestExampleLine5Part1;
procedure TestExampleLine6Part1;
procedure TestExampleLine1Part2;
procedure TestExampleLine2Part2;
procedure TestExampleLine3Part2;
procedure TestExampleLine4Part2;
procedure TestExampleLine5Part2;
procedure TestExampleLine6Part2;
end;
implementation
procedure THotSpringsFullDataTestCase.TestPart2;
begin
AssertEquals(-1, FSolver.GetResultPart2);
end;
{ THotSpringsExampleTestCase }
function THotSpringsExampleTestCase.CreateSolver: ISolver;
@ -64,6 +86,11 @@ begin
AssertEquals(21, FSolver.GetResultPart1);
end;
procedure THotSpringsExampleTestCase.TestPart2;
begin
AssertEquals(525152, FSolver.GetResultPart2);
end;
{ THotSpringsTestCase }
function THotSpringsTestCase.CreateSolver: ISolver;
@ -71,42 +98,83 @@ begin
Result := THotSprings.Create;
end;
procedure THotSpringsTestCase.TestSingleLine(const ALine: string; const AValue: Integer);
procedure THotSpringsTestCase.TestSingleLine(const ALine: string);
begin
FSolver.Init;
FSolver.ProcessDataLine(ALine);
FSolver.Finish;
AssertEquals(AValue, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine1;
procedure THotSpringsTestCase.TestExampleLine1Part1;
begin
TestSingleLine('???.### 1,1,3', 1);
TestSingleLine('???.### 1,1,3');
AssertEquals(1, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine2;
procedure THotSpringsTestCase.TestExampleLine2Part1;
begin
TestSingleLine('.??..??...?##. 1,1,3', 4);
TestSingleLine('.??..??...?##. 1,1,3');
AssertEquals(4, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine3;
procedure THotSpringsTestCase.TestExampleLine3Part1;
begin
TestSingleLine('?#?#?#?#?#?#?#? 1,3,1,6', 1);
TestSingleLine('?#?#?#?#?#?#?#? 1,3,1,6');
AssertEquals(1, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine4;
procedure THotSpringsTestCase.TestExampleLine4Part1;
begin
TestSingleLine('????.#...#... 4,1,1', 1);
TestSingleLine('????.#...#... 4,1,1');
AssertEquals(1, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine5;
procedure THotSpringsTestCase.TestExampleLine5Part1;
begin
TestSingleLine('????.######..#####. 1,6,5', 4);
TestSingleLine('????.######..#####. 1,6,5');
AssertEquals(4, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine6;
procedure THotSpringsTestCase.TestExampleLine6Part1;
begin
TestSingleLine('?###???????? 3,2,1', 10);
TestSingleLine('?###???????? 3,2,1');
AssertEquals(10, FSolver.GetResultPart1);
end;
procedure THotSpringsTestCase.TestExampleLine1Part2;
begin
TestSingleLine('???.### 1,1,3');
AssertEquals(1, FSolver.GetResultPart2);
end;
procedure THotSpringsTestCase.TestExampleLine2Part2;
begin
TestSingleLine('.??..??...?##. 1,1,3');
AssertEquals(16384, FSolver.GetResultPart2);
end;
procedure THotSpringsTestCase.TestExampleLine3Part2;
begin
TestSingleLine('?#?#?#?#?#?#?#? 1,3,1,6');
AssertEquals(1, FSolver.GetResultPart2);
end;
procedure THotSpringsTestCase.TestExampleLine4Part2;
begin
TestSingleLine('????.#...#... 4,1,1');
AssertEquals(16, FSolver.GetResultPart2);
end;
procedure THotSpringsTestCase.TestExampleLine5Part2;
begin
TestSingleLine('????.######..#####. 1,6,5');
AssertEquals(2500, FSolver.GetResultPart2);
end;
procedure THotSpringsTestCase.TestExampleLine6Part2;
begin
TestSingleLine('?###???????? 3,2,1');
AssertEquals(506250, FSolver.GetResultPart2);
end;
initialization

View File

@ -1,6 +1,6 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2023-2024 Stefan Müller
Copyright (C) 2023 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
@ -33,7 +33,6 @@ type
function CreateSolver: ISolver; override;
published
procedure TestPart1;
procedure TestPart2;
end;
implementation
@ -50,11 +49,6 @@ begin
AssertEquals(94, FSolver.GetResultPart1);
end;
procedure TLongWalkExampleTestCase.TestPart2;
begin
AssertEquals(154, FSolver.GetResultPart2);
end;
initialization
RegisterTest('TLongWalk', TLongWalkExampleTestCase);

View File

@ -1,6 +1,6 @@
{
Solutions to the Advent Of Code.
Copyright (C) 2023-2024 Stefan Müller
Copyright (C) 2023 Stefan Müller
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
@ -25,22 +25,10 @@ uses
Classes, SysUtils, fpcunit, testregistry, USolver, UBaseTestCases, UStepCounter;
type
// Note that the solver implementation does not work with the examples presented
// in the puzzle description for part 2, therefore they are not represented here
// as test cases.
{ TStepCounterExampleSteps3TestCase }
{ TStepCounterMax6ExampleTestCase }
TStepCounterExampleSteps3TestCase = class(TExampleEngineBaseTest)
protected
function CreateSolver: ISolver; override;
published
procedure TestPart1;
end;
{ TStepCounterExampleSteps6TestCase }
TStepCounterExampleSteps6TestCase = class(TExampleEngineBaseTest)
TStepCounterMax6ExampleTestCase = class(TExampleEngineBaseTest)
protected
function CreateSolver: ISolver; override;
published
@ -49,33 +37,20 @@ type
implementation
{ TStepCounterExampleSteps3TestCase }
{ TStepCounterMax6ExampleTestCase }
function TStepCounterExampleSteps3TestCase.CreateSolver: ISolver;
function TStepCounterMax6ExampleTestCase.CreateSolver: ISolver;
begin
Result := TStepCounter.Create(3, 3);
Result := TStepCounter.Create(6);
end;
procedure TStepCounterExampleSteps3TestCase.TestPart1;
begin
AssertEquals(6, FSolver.GetResultPart1);
end;
{ TStepCounterExampleSteps6TestCase }
function TStepCounterExampleSteps6TestCase.CreateSolver: ISolver;
begin
Result := TStepCounter.Create(6, 6);
end;
procedure TStepCounterExampleSteps6TestCase.TestPart1;
procedure TStepCounterMax6ExampleTestCase.TestPart1;
begin
AssertEquals(16, FSolver.GetResultPart1);
end;
initialization
RegisterTest('TStepCounter', TStepCounterExampleSteps3TestCase);
RegisterTest('TStepCounter', TStepCounterExampleSteps6TestCase);
RegisterTest('TStepCounter', TStepCounterMax6ExampleTestCase);
end.