Updated bisection root finding algorithm and test case
This commit is contained in:
parent
cbaffbf55e
commit
53e3922654
|
@ -22,17 +22,29 @@ unit UPolynomialRoots;
|
||||||
interface
|
interface
|
||||||
|
|
||||||
uses
|
uses
|
||||||
Classes, SysUtils, UPolynomial, UBigInt;
|
Classes, SysUtils, Generics.Collections, UPolynomial, UBigInt;
|
||||||
|
|
||||||
type
|
type
|
||||||
|
|
||||||
|
{ TIsolatingInterval }
|
||||||
|
|
||||||
|
// Represents an isolating interval of the form [C / 2^K, (C + H) / 2^K] in respect to [0, 1] or [A / 2^K, B / 2^K] in
|
||||||
|
// respect to [0, bound], with A = C * bound and B = (C + H) * bound.
|
||||||
|
TIsolatingInterval = record
|
||||||
|
C, K, H: Cardinal;
|
||||||
|
Bound, A, B: TBigInt;
|
||||||
|
end;
|
||||||
|
|
||||||
|
TIsolatingIntervals = specialize TList<TIsolatingInterval>;
|
||||||
|
|
||||||
{ TRootIsolation }
|
{ TRootIsolation }
|
||||||
|
|
||||||
TRootIsolation = class
|
TRootIsolation = class
|
||||||
private
|
private
|
||||||
function CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt;
|
function CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt;
|
||||||
|
function GetIsolatingInterval(const AC, AK, AH: Cardinal; constref ABound: TBigInt): TIsolatingInterval;
|
||||||
public
|
public
|
||||||
function Bisect(constref APolynomial: TBigIntPolynomial): Int64;
|
function Bisect(constref APolynomial: TBigIntPolynomial): TIsolatingIntervals;
|
||||||
end;
|
end;
|
||||||
|
|
||||||
implementation
|
implementation
|
||||||
|
@ -42,30 +54,96 @@ implementation
|
||||||
function TRootIsolation.CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt;
|
function TRootIsolation.CalcSimpleRootBound(constref APolynomial: TBigIntPolynomial): TBigInt;
|
||||||
var
|
var
|
||||||
i, sign: Integer;
|
i, sign: Integer;
|
||||||
a: TBigInt;
|
an, ai, max: TBigInt;
|
||||||
|
numeratorBit, denominatorBit: Int64;
|
||||||
begin
|
begin
|
||||||
// We need a_n > 0 here, so we use -sign(a_n) instead of actually flipping the polynomial.
|
// We need a_n > 0 here, so we use -sign(a_n) instead of actually flipping the polynomial.
|
||||||
// Sign is not 0 because a_n is not 0.
|
// Sign is not 0 because a_n is not 0.
|
||||||
sign := -APolynomial.Coefficient[APolynomial.Degree].Sign;
|
an := APolynomial.Coefficient[APolynomial.Degree];
|
||||||
|
sign := -an.Sign;
|
||||||
|
|
||||||
// This is a simplification of Cauchy's bound to avoid division.
|
// This is a simplification of Cauchy's bound to avoid division and make it a power of two.
|
||||||
// https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Bounds_of_positive_real_roots
|
// https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Bounds_of_positive_real_roots
|
||||||
Result := TBigInt.Zero;
|
max := TBigInt.Zero;
|
||||||
for i := 0 to APolynomial.Degree - 1 do begin
|
for i := 0 to APolynomial.Degree - 1 do begin
|
||||||
a := sign * APolynomial.Coefficient[i];
|
ai := sign * APolynomial.Coefficient[i];
|
||||||
if Result < a then
|
if max < ai then
|
||||||
Result := a;
|
max := ai;
|
||||||
end;
|
end;
|
||||||
Result := Result + 1;
|
numeratorBit := max.GetMostSignificantBitIndex + 1;
|
||||||
|
denominatorBit := an.GetMostSignificantBitIndex;
|
||||||
|
Result := TBigInt.One << (numeratorBit - denominatorBit);
|
||||||
end;
|
end;
|
||||||
|
|
||||||
function TRootIsolation.Bisect(constref APolynomial: TBigIntPolynomial): Int64;
|
function TRootIsolation.GetIsolatingInterval(const AC, AK, AH: Cardinal; constref ABound: TBigInt): TIsolatingInterval;
|
||||||
|
begin
|
||||||
|
Result.C := AC;
|
||||||
|
Result.K := AK;
|
||||||
|
Result.H := AH;
|
||||||
|
Result.Bound := ABound;
|
||||||
|
Result.A := AC * ABound;
|
||||||
|
Result.B := (AC + AH) * ABound;
|
||||||
|
end;
|
||||||
|
|
||||||
|
// This is adapted from
|
||||||
|
// https://en.wikipedia.org/wiki/Real-root_isolation#Bisection_method
|
||||||
|
function TRootIsolation.Bisect(constref APolynomial: TBigIntPolynomial): TIsolatingIntervals;
|
||||||
|
type
|
||||||
|
TWorkItem = record
|
||||||
|
C, K: Cardinal;
|
||||||
|
P: TBigIntPolynomial;
|
||||||
|
end;
|
||||||
|
TWorkStack = specialize TStack<TWorkItem>;
|
||||||
var
|
var
|
||||||
bound: TBigInt;
|
bound: TBigInt;
|
||||||
p: TBigIntPolynomial;
|
item: TWorkItem;
|
||||||
|
stack: TWorkStack;
|
||||||
|
n, v: Integer;
|
||||||
|
varq: TBigIntPolynomial;
|
||||||
begin
|
begin
|
||||||
|
Result := TIsolatingIntervals.Create;
|
||||||
|
stack := TWorkStack.Create;
|
||||||
|
|
||||||
bound := CalcSimpleRootBound(APolynomial);
|
bound := CalcSimpleRootBound(APolynomial);
|
||||||
p := APolynomial.ScaleVariable(bound);
|
n := item.P.Degree;
|
||||||
|
|
||||||
|
item.C := 0;
|
||||||
|
item.K := 0;
|
||||||
|
item.P := APolynomial.ScaleVariable(bound);
|
||||||
|
stack.Push(item);
|
||||||
|
|
||||||
|
while stack.Count > 0 do
|
||||||
|
begin
|
||||||
|
item := stack.Pop;
|
||||||
|
if item.P.Coefficient[0] = TBigInt.Zero then
|
||||||
|
begin
|
||||||
|
// Found an integer root at 0.
|
||||||
|
item.P := item.P.DivideByVariable;
|
||||||
|
Dec(n);
|
||||||
|
Result.Add(GetIsolatingInterval(item.C, item.K, 0, bound));
|
||||||
|
end;
|
||||||
|
|
||||||
|
varq := item.P.RevertOrderOfCoefficients.TranslateVariableByOne;
|
||||||
|
v := varq.CalcSignVariations;
|
||||||
|
if v = 1 then
|
||||||
|
begin
|
||||||
|
// Found isolating interval.
|
||||||
|
Result.Add(GetIsolatingInterval(item.C, item.K, 1, bound));
|
||||||
|
end
|
||||||
|
else if v > 1 then
|
||||||
|
begin
|
||||||
|
// Bisects, first new work item is (2c, k + 1, 2^n * q(x/2)).
|
||||||
|
item.C := item.C << 1;
|
||||||
|
Inc(item.K);
|
||||||
|
item.P := item.P.ScaleVariableByHalf.ScaleByPowerOfTwo(n);
|
||||||
|
stack.Push(item);
|
||||||
|
// ... second new work item is (2c + 1, k + 1, 2^n * q((x+1)/2)).
|
||||||
|
item.C := item.C + 1;
|
||||||
|
item.P := item.P.TranslateVariableByOne;
|
||||||
|
stack.Push(item);
|
||||||
|
end;
|
||||||
|
end;
|
||||||
|
stack.Free;
|
||||||
end;
|
end;
|
||||||
|
|
||||||
end.
|
end.
|
||||||
|
|
|
@ -54,15 +54,31 @@ begin
|
||||||
end;
|
end;
|
||||||
|
|
||||||
procedure TPolynomialRootsTestCase.TestBisectionRootIsolation;
|
procedure TPolynomialRootsTestCase.TestBisectionRootIsolation;
|
||||||
|
const
|
||||||
|
expRoots: array of Cardinal = (34000, 23017, 5);
|
||||||
var
|
var
|
||||||
|
exp: Cardinal;
|
||||||
a: TBigIntPolynomial;
|
a: TBigIntPolynomial;
|
||||||
r: Int64;
|
r: TIsolatingIntervals;
|
||||||
|
ri: TIsolatingInterval;
|
||||||
|
found: Boolean;
|
||||||
begin
|
begin
|
||||||
// y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112)
|
// y = 3 * (x - 34000) * (x - 23017) * (x - 5) * (x^2 - 19) * (x + 112)
|
||||||
// = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000
|
// = 3 * x^6 - 170730 * x^5 + 2329429920 * x^4 + 251300082690 * x^3 - 1270471872603 * x^2 + 4774763204640 * x - 24979889760000
|
||||||
a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]);
|
a := TBigIntPolynomial.Create([-24979889760000, 4774763204640, -1270471872603, 251300082690, 2329429920, -170730, 3]);
|
||||||
r := FRootIsolation.Bisect(a);
|
r := FRootIsolation.Bisect(a);
|
||||||
AssertEquals(0, r);
|
AssertEquals(Length(expRoots), r.Count);
|
||||||
|
for exp in expRoots do
|
||||||
|
begin
|
||||||
|
found := False;
|
||||||
|
for ri in r do
|
||||||
|
if (ri.A <= exp) and (exp <= ri.B) then
|
||||||
|
begin
|
||||||
|
found := True;
|
||||||
|
Break;
|
||||||
|
end;
|
||||||
|
AssertTrue('No isolating interval for expected root ' + IntToStr(exp) + ' found.', found);
|
||||||
|
end;
|
||||||
end;
|
end;
|
||||||
|
|
||||||
initialization
|
initialization
|
||||||
|
|
Loading…
Reference in New Issue