2024-01-31 18:59:28 +01:00
|
|
|
{
|
|
|
|
Solutions to the Advent Of Code.
|
|
|
|
Copyright (C) 2022-2024 Stefan Müller
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
|
|
Foundation, either version 3 of the License, or (at your option) any later
|
|
|
|
version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
|
|
this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
}
|
|
|
|
|
|
|
|
unit UBigInt;
|
|
|
|
|
|
|
|
{$mode ObjFPC}{$H+}
|
|
|
|
|
|
|
|
interface
|
|
|
|
|
|
|
|
uses
|
|
|
|
Classes, SysUtils, Math;
|
|
|
|
|
|
|
|
type
|
|
|
|
TDigits = array of Cardinal;
|
|
|
|
|
|
|
|
{ TBigInt }
|
|
|
|
|
|
|
|
// This is an abbreviated reimplementation of a C# class created in 2022.
|
|
|
|
TBigInt = object
|
|
|
|
private
|
|
|
|
FDigits: TDigits;
|
|
|
|
FIsNegative: Boolean;
|
|
|
|
// Adds A and B, ignoring their signs and using ReturnNegative instead. The result is
|
|
|
|
// Sign * (Abs(A) + Abs(B)),
|
|
|
|
// where Sign is 1 for ReturnNegative = False and -1 otherwise.
|
|
|
|
class function AddAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt; static;
|
|
|
|
// Subtracts B from A, ignoring their signs. However, the result might be negative, and the sign can be reversed by
|
|
|
|
// setting ReturnNegative to True. The result is
|
|
|
|
// Sign * (Abs(A) - Abs(B)),
|
|
|
|
// where Sign is 1 for ReturnNegative = False and -1 otherwise.
|
|
|
|
class function SubtractAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt; static;
|
|
|
|
// Multiplies A and B, ignoring their signs and using ReturnNegative instead. This multiplication uses a recursive
|
|
|
|
// implementation of the Karatsuba algorithm. See
|
|
|
|
// https://www.geeksforgeeks.org/karatsuba-algorithm-for-fast-multiplication-using-divide-and-conquer-algorithm/
|
|
|
|
// The result is
|
|
|
|
// Sign * (Abs(a) * Abs(b))
|
|
|
|
// where Sign is 1 for ReturnNegative = False and -1 otherwise.
|
|
|
|
class function MultiplyAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt; static;
|
|
|
|
// Copies consecutive digits from this BigInt to create a new one. The result will be positive. Leading zeros are
|
|
|
|
// removed from the result, but AIndex + ACount must not exceed the number of digits of this BigInt.
|
|
|
|
// AIndex is the first (least significant) digit to be taken. The digit with this index will become the 0th digit of
|
|
|
|
// the new BigInt.
|
|
|
|
// ACount is the number of consecutive digits to be taken, and the number of digits of the result.
|
|
|
|
function GetSegment(const AIndex, ACount: Integer): TBigInt;
|
|
|
|
// Compares the absolute value of this TBigInt object to the absolute value of another one. Returns -1 if this
|
|
|
|
// object is less than AOther, 1 if this object is greater than AOther, and 0 if they are equal.
|
|
|
|
function CompareToAbsoluteValues(constref AOther: TBigInt): Integer;
|
|
|
|
public
|
|
|
|
property IsNegative: Boolean read FIsNegative;
|
|
|
|
constructor InitZero;
|
|
|
|
constructor Init(const AValue: Int64);
|
|
|
|
destructor Done;
|
|
|
|
function CompareTo(constref AOther: TBigInt): Integer;
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator := (const A: Int64): TBigInt;
|
|
|
|
operator + (const A, B: TBigInt): TBigInt;
|
|
|
|
operator - (const A, B: TBigInt): TBigInt;
|
|
|
|
operator * (const A: TBigInt; const B: Int64): TBigInt;
|
|
|
|
operator shl (const A: TBigInt; const B: Integer): TBigInt;
|
|
|
|
operator = (const A: TBigInt; const B: Int64): Boolean;
|
|
|
|
|
|
|
|
implementation
|
|
|
|
|
|
|
|
const
|
|
|
|
CBase = Cardinal.MaxValue + 1;
|
|
|
|
CMaxDigit = Cardinal.MaxValue;
|
|
|
|
CDigitSize = SizeOf(Cardinal);
|
|
|
|
CBitsPerDigit = CDigitSize * 8;
|
|
|
|
CHalfBits = CBitsPerDigit >> 1;
|
|
|
|
CHalfDigitMax = (1 << CHalfBits) - 1;
|
|
|
|
|
|
|
|
{ TBigInt }
|
|
|
|
|
|
|
|
class function TBigInt.AddAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt;
|
|
|
|
var
|
|
|
|
i, lenA, lenB, len, shorter: Integer;
|
|
|
|
carry: Cardinal;
|
|
|
|
begin
|
|
|
|
lenA := Length(AA.FDigits);
|
|
|
|
lenB := Length(AB.FDigits);
|
|
|
|
|
|
|
|
// Initializes the digits array of the result, with a simple test to try to predict a carry-over into a new digit. The
|
|
|
|
// result could still carry into new digit depending on lower digits (carry over multiple digits), which would be
|
|
|
|
// handled at the end.
|
|
|
|
if lenA = lenB then
|
|
|
|
if CMaxDigit - AA.FDigits[lenA - 1] < AB.FDigits[lenB - 1] then
|
|
|
|
// Result will carry into new digit.
|
|
|
|
SetLength(Result.FDigits, lenA + 1)
|
|
|
|
else
|
|
|
|
SetLength(Result.FDigits, lenA)
|
|
|
|
else
|
|
|
|
SetLength(Result.FDigits, Max(lenA, lenB));
|
|
|
|
len := Length(Result.FDigits);
|
|
|
|
|
|
|
|
// Calculates the new digits from less to more significant until the end of the shorter operand is reached.
|
|
|
|
shorter := Min(Length(AA.FDigits), Length(AB.FDigits));
|
|
|
|
i := 0;
|
|
|
|
carry := 0;
|
|
|
|
while i < shorter do
|
|
|
|
begin
|
|
|
|
if (AB.FDigits[i] = CMaxDigit) and (carry > 0) then
|
|
|
|
begin
|
|
|
|
Result.FDigits[i] := AA.FDigits[i];
|
|
|
|
carry := 1;
|
|
|
|
end
|
|
|
|
else
|
|
|
|
if CMaxDigit - AA.FDigits[i] < AB.FDigits[i] + carry then
|
|
|
|
begin
|
|
|
|
Result.FDigits[i] := AB.FDigits[i] + carry - 1 - (CMaxDigit - AA.FDigits[i]);
|
|
|
|
carry := 1;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
Result.FDigits[i] := AA.FDigits[i] + AB.FDigits[i] + carry;
|
|
|
|
carry := 0;
|
|
|
|
end;
|
|
|
|
Inc(i);
|
|
|
|
end;
|
|
|
|
|
|
|
|
// Copies the missing unchanged digits from the longer operand to the result, if any, before applying remaining
|
|
|
|
// carry-overs. This avoids additional tests for finding the shorter digit array.
|
|
|
|
if (i < lenA) or (i < lenB) then
|
|
|
|
if lenA >= lenB then
|
|
|
|
Move(AA.FDigits[i], Result.FDigits[i], CDigitSize * (len - i))
|
|
|
|
else
|
|
|
|
Move(AB.FDigits[i], Result.FDigits[i], CDigitSize * (len - i));
|
|
|
|
|
|
|
|
// Applies the remaining carry-overs until the end of the prepared result digit array.
|
|
|
|
while (carry > 0) and (i < len) do
|
|
|
|
begin
|
|
|
|
if Result.FDigits[i] = CMaxDigit then
|
|
|
|
Result.FDigits[i] := 0
|
|
|
|
else begin
|
|
|
|
Inc(Result.FDigits[i]);
|
|
|
|
carry := 0;
|
|
|
|
end;
|
|
|
|
Inc(i);
|
|
|
|
end;
|
|
|
|
|
|
|
|
// Applies the carry-over into a new digit that was not anticipated in the initialization at the top (carry over
|
|
|
|
// multiple digits).
|
|
|
|
if carry > 0 then
|
|
|
|
Insert(1, Result.FDigits, 0);
|
|
|
|
Result.FIsNegative := AReturnNegative;
|
|
|
|
end;
|
|
|
|
|
|
|
|
class function TBigInt.SubtractAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt;
|
|
|
|
var
|
|
|
|
a, b: TBigInt;
|
|
|
|
carry: Cardinal;
|
|
|
|
i, lastNonZeroDigitIndex, len: Integer;
|
|
|
|
begin
|
|
|
|
// Establishes the operand order, such that Abs(a) is not less than Abs(b).
|
|
|
|
if (AA.CompareToAbsoluteValues(AB) >= 0) then
|
|
|
|
begin
|
|
|
|
a := AA;
|
|
|
|
b := AB;
|
|
|
|
Result.FIsNegative := AReturnNegative;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
a := AB;
|
|
|
|
b := AA;
|
|
|
|
Result.FIsNegative := not AReturnNegative;
|
|
|
|
end;
|
|
|
|
|
|
|
|
// Calculates the new digits from less to more significant until the end of the shorter operand is reached and all
|
|
|
|
// carry-overs have been applied.
|
|
|
|
len := Length(a.FDigits);
|
|
|
|
SetLength(Result.FDigits, len);
|
|
|
|
carry := 0;
|
|
|
|
// Tracks leading zeros for the trim below.
|
|
|
|
lastNonZeroDigitIndex := 0;
|
|
|
|
i := 0;
|
|
|
|
while i < Length(b.FDigits) do
|
|
|
|
begin
|
|
|
|
if (a.FDigits[i] = b.FDigits[i]) and (carry > 0) then
|
|
|
|
begin
|
|
|
|
Result.FDigits[i] := CMaxDigit;
|
|
|
|
carry := 1;
|
|
|
|
lastNonZeroDigitIndex := i;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
if a.FDigits[i] < b.FDigits[i] then
|
|
|
|
begin
|
|
|
|
Result.FDigits[i] := CMaxDigit - (b.FDigits[i] - a.FDigits[i]) + 1 - carry;
|
|
|
|
carry := 1;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
Result.FDigits[i] := a.FDigits[i] - b.FDigits[i] - carry;
|
|
|
|
carry := 0;
|
|
|
|
end;
|
2024-01-31 19:20:10 +01:00
|
|
|
if Result.FDigits[i] > 0 then
|
2024-01-31 18:59:28 +01:00
|
|
|
lastNonZeroDigitIndex := i;
|
|
|
|
end;
|
|
|
|
Inc(i);
|
|
|
|
end;
|
|
|
|
while carry > 0 do
|
|
|
|
begin
|
|
|
|
if a.FDigits[i] = 0 then
|
|
|
|
begin
|
|
|
|
Result.FDigits[i] := CMaxDigit;
|
|
|
|
lastNonZeroDigitIndex := i;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
Result.FDigits[i] := a.FDigits[i] - carry;
|
|
|
|
carry := 0;
|
2024-01-31 19:20:10 +01:00
|
|
|
if Result.FDigits[i] > 0 then
|
2024-01-31 18:59:28 +01:00
|
|
|
lastNonZeroDigitIndex := i;
|
|
|
|
end;
|
|
|
|
Inc(i);
|
|
|
|
end;
|
|
|
|
|
|
|
|
// Copies the missing unchanged digits from the longer operand to the result, if any. If there are none, then no trim
|
|
|
|
// needs to occur because the most significant digit is not zero.
|
|
|
|
if i < len then
|
|
|
|
Move(a.FDigits[i], Result.FDigits[i], CDigitSize * (len - i))
|
|
|
|
else if (lastNonZeroDigitIndex + 1 < len) then
|
|
|
|
// Trims leading zeros from the digits array.
|
|
|
|
Delete(Result.FDigits, lastNonZeroDigitIndex + 1, len - lastNonZeroDigitIndex - 1);
|
|
|
|
end;
|
|
|
|
|
|
|
|
class function TBigInt.MultiplyAbsoluteValues(constref AA, AB: TBigInt; const AReturnNegative: Boolean): TBigInt;
|
|
|
|
var
|
|
|
|
lenA, lenB, lenMax, floorHalfLength, ceilHalfLength: Integer;
|
|
|
|
a1, a0, b1, b0, a1b1, a0b0: Cardinal;
|
|
|
|
am, bm, middle, biga1, biga0, bigb1, bigb0, biga1b1, biga0b0: TBigInt;
|
|
|
|
begin
|
|
|
|
lenA := Length(AA.FDigits);
|
|
|
|
lenB := Length(AB.FDigits);
|
|
|
|
if (lenA <= 1) and (lenB <= 1) then
|
|
|
|
begin
|
|
|
|
if (AA.FDigits[0] <= CHalfDigitMax) and (AB.FDigits[0] <= CHalfDigitMax) then
|
|
|
|
if (AA.FDigits[0] = 0) or (AB.FDigits[0] = 0) then
|
|
|
|
Result.InitZero
|
|
|
|
else begin
|
|
|
|
Result.FDigits := TDigits.Create(AA.FDigits[0] * AB.FDigits[0]);
|
|
|
|
Result.FIsNegative := AReturnNegative;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
// a1, a0, b1, b0 use only the lower (less significant) half of the bits of a digit, so the product of any two of
|
|
|
|
// these fits in one digit.
|
|
|
|
a1 := AA.FDigits[0] >> CHalfBits;
|
|
|
|
a0 := AA.FDigits[0] and CHalfDigitMax;
|
|
|
|
b1 := AB.FDigits[0] >> CHalfBits;
|
|
|
|
b0 := AB.FDigits[0] and CHalfDigitMax;
|
|
|
|
a1b1 := a1 * b1;
|
|
|
|
a0b0 := a0 * b0;
|
|
|
|
|
|
|
|
if a1b1 > 0 then
|
|
|
|
Result.FDigits := TDigits.Create(a0b0, a1b1)
|
|
|
|
else
|
|
|
|
Result.FDigits := TDigits.Create(a0b0);
|
|
|
|
Result.FIsNegative := AReturnNegative;
|
|
|
|
|
|
|
|
// The result of (a1 + a0) * (b1 + b0) might not fit in one digit, so one last recursion step is necessary.
|
|
|
|
am.Init(a1 + a0);
|
|
|
|
bm.Init(b1 + b0);
|
|
|
|
middle := (MultiplyAbsoluteValues(am, bm, False) - a1b1 - a0b0) << CHalfBits;
|
|
|
|
if AReturnNegative then
|
|
|
|
Result := Result - middle
|
|
|
|
else
|
|
|
|
Result := Result + middle;
|
|
|
|
end;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
// Calculates where to split the two numbers.
|
|
|
|
lenMax := Max(lenA, lenB);
|
|
|
|
floorHalfLength := lenMax >> 1;
|
|
|
|
ceilHalfLength := lenMax - floorHalfLength;
|
|
|
|
|
|
|
|
// Performs one recursion step.
|
|
|
|
if ceilHalfLength < lenA then
|
|
|
|
begin
|
|
|
|
biga1 := AA.GetSegment(ceilHalfLength, lenA - ceilHalfLength);
|
|
|
|
biga0 := AA.GetSegment(0, ceilHalfLength);
|
|
|
|
|
|
|
|
if ceilHalfLength < lenB then
|
|
|
|
begin
|
|
|
|
bigb1 := AB.GetSegment(ceilHalfLength, lenB - ceilHalfLength);
|
|
|
|
bigb0 := AB.GetSegment(0, ceilHalfLength);
|
|
|
|
biga1b1 := MultiplyAbsoluteValues(biga1, bigb1, AReturnNegative);
|
|
|
|
biga0b0 := MultiplyAbsoluteValues(biga0, bigb0, AReturnNegative);
|
|
|
|
Result := (biga1b1 << (2 * ceilHalfLength * CBitsPerDigit))
|
|
|
|
+ ((MultiplyAbsoluteValues(biga1 + biga0, bigb1 + bigb0, AReturnNegative) - biga1b1 - biga0b0) << (ceilHalfLength * CBitsPerDigit))
|
|
|
|
+ biga0b0;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
biga0b0 := MultiplyAbsoluteValues(biga0, AB, AReturnNegative);
|
|
|
|
Result := ((MultiplyAbsoluteValues(biga1 + biga0, AB, AReturnNegative) - biga0b0) << (ceilHalfLength * CBitsPerDigit)) + biga0b0;
|
|
|
|
end;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
bigb1 := AB.GetSegment(ceilHalfLength, lenB - ceilHalfLength);
|
|
|
|
bigb0 := AB.GetSegment(0, ceilHalfLength);
|
|
|
|
biga0b0 := MultiplyAbsoluteValues(AA, bigb0, AReturnNegative);
|
|
|
|
Result := ((MultiplyAbsoluteValues(AA, bigb1 + bigb0, AReturnNegative) - biga0b0) << (ceilHalfLength * CBitsPerDigit)) + biga0b0;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function TBigInt.GetSegment(const AIndex, ACount: Integer): TBigInt;
|
|
|
|
var
|
|
|
|
trimmedCount: Integer;
|
|
|
|
begin
|
|
|
|
trimmedCount := ACount;
|
|
|
|
while (trimmedCount > 1) and (FDigits[AIndex + trimmedCount - 1] = 0) do
|
|
|
|
Dec(trimmedCount);
|
|
|
|
SetLength(Result.FDigits, trimmedCount);
|
|
|
|
Move(FDigits[AIndex], Result.FDigits[0], CDigitSize * trimmedCount);
|
|
|
|
Result.FIsNegative := False;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function TBigInt.CompareToAbsoluteValues(constref AOther: TBigInt): Integer;
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
begin
|
|
|
|
if Length(FDigits) < Length(AOther.FDigits) then
|
|
|
|
Result := -1
|
|
|
|
else if Length(FDigits) > Length(AOther.FDigits) then
|
|
|
|
Result := 1
|
|
|
|
else begin
|
|
|
|
Result := 0;
|
|
|
|
for i := High(FDigits) downto 0 do
|
|
|
|
if FDigits[i] < AOther.FDigits[i] then
|
|
|
|
begin
|
|
|
|
Result := -1;
|
|
|
|
Break;
|
|
|
|
end
|
|
|
|
else if FDigits[i] > AOther.FDigits[i] then
|
|
|
|
begin
|
|
|
|
Result := 1;
|
|
|
|
Break;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
constructor TBigInt.InitZero;
|
|
|
|
begin
|
|
|
|
FIsNegative := False;
|
|
|
|
FDigits := TDigits.Create(0);
|
|
|
|
end;
|
|
|
|
|
|
|
|
constructor TBigInt.Init(const AValue: Int64);
|
|
|
|
var
|
|
|
|
absVal: Int64;
|
|
|
|
begin
|
|
|
|
FIsNegative := AValue < 0;
|
|
|
|
if AValue <> Int64.MinValue then
|
|
|
|
begin
|
|
|
|
absVal := Abs(AValue);
|
|
|
|
if absVal >= CBase then
|
|
|
|
FDigits := TDigits.Create(absVal mod CBase, absVal div CBase)
|
|
|
|
else
|
|
|
|
FDigits := TDigits.Create(absVal);
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
FIsNegative := True;
|
|
|
|
FDigits := TDigits.Create(0, 1 << 31);
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
destructor TBigInt.Done;
|
|
|
|
begin
|
|
|
|
SetLength(FDigits, 0);
|
|
|
|
end;
|
|
|
|
|
|
|
|
function TBigInt.CompareTo(constref AOther: TBigInt): Integer;
|
|
|
|
begin
|
|
|
|
if IsNegative = AOther.IsNegative then
|
|
|
|
Result := CompareToAbsoluteValues(AOther)
|
|
|
|
else
|
|
|
|
Result := 1;
|
|
|
|
if IsNegative then
|
|
|
|
Result := -Result;
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator := (const A: Int64): TBigInt;
|
|
|
|
begin
|
|
|
|
Result.Done;
|
|
|
|
Result.Init(A);
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator + (const A, B: TBigInt): TBigInt;
|
|
|
|
begin
|
|
|
|
if A.IsNegative = B.IsNegative then
|
|
|
|
Result := TBigInt.AddAbsoluteValues(A, B, A.IsNegative)
|
|
|
|
else
|
|
|
|
Result := TBigInt.SubtractAbsoluteValues(A, B, A.IsNegative);
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator - (const A, B: TBigInt): TBigInt;
|
|
|
|
begin
|
|
|
|
if A.IsNegative = B.IsNegative then
|
|
|
|
Result := TBigInt.SubtractAbsoluteValues(A, B, A.IsNegative)
|
|
|
|
else
|
|
|
|
Result := TBigInt.AddAbsoluteValues(A, B, A.IsNegative);
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator * (const A: TBigInt; const B: Int64): TBigInt;
|
|
|
|
begin
|
|
|
|
if (a = 0) or (b = 0) then
|
|
|
|
Result.InitZero
|
|
|
|
else
|
|
|
|
Result := TBigInt.MultiplyAbsoluteValues(A, B, A.IsNegative = (B > 0));
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator shl(const A: TBigInt; const B: Integer): TBigInt;
|
|
|
|
var
|
|
|
|
i, j, digitShifts, bitShifts, reverseShift, len, newLength: Integer;
|
|
|
|
lastDigit: Cardinal;
|
|
|
|
begin
|
|
|
|
// Handles shift of zero.
|
|
|
|
if A = 0 then
|
|
|
|
Result.InitZero
|
|
|
|
else begin
|
|
|
|
// Determines full digit shifts and bit shifts.
|
|
|
|
DivMod(B, CBitsPerDigit, digitShifts, bitShifts);
|
|
|
|
|
|
|
|
if bitShifts > 0 then
|
|
|
|
begin
|
|
|
|
reverseShift := CBitsPerDigit - bitShifts;
|
|
|
|
len := Length(A.FDigits);
|
|
|
|
lastDigit := A.FDigits[len - 1] >> reverseShift;
|
|
|
|
newLength := len + digitShifts;
|
|
|
|
|
|
|
|
if lastDigit = 0 then
|
|
|
|
SetLength(Result.FDigits, newLength)
|
|
|
|
else
|
|
|
|
SetLength(Result.FDigits, newLength + 1);
|
|
|
|
|
|
|
|
// Performs full digit shifts by shifting the access index j for A.FDigits.
|
|
|
|
Result.FDigits[digitShifts] := A.FDigits[0] << bitShifts;
|
|
|
|
j := 0;
|
|
|
|
for i := digitShifts + 1 to newLength - 1 do
|
|
|
|
begin
|
|
|
|
// Performs bit shifts.
|
|
|
|
Result.FDigits[i] := A.FDigits[j] >> reverseShift;
|
|
|
|
Inc(j);
|
|
|
|
Result.FDigits[i] := Result.FDigits[i] or (A.FDigits[j] << bitShifts);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if Length(Result.FDigits) > newLength then
|
|
|
|
Result.FDigits[newLength] := lastDigit;
|
|
|
|
end
|
|
|
|
else begin
|
|
|
|
// Performs full digit shifts by copy if there are no bit shifts.
|
|
|
|
len := Length(A.FDigits);
|
|
|
|
SetLength(Result.FDigits, len + digitShifts);
|
|
|
|
Move(A.FDigits[0], Result.FDigits[digitShifts], Length(A.FDigits));
|
|
|
|
end;
|
|
|
|
|
|
|
|
Result.FIsNegative := A.IsNegative;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
operator = (const A: TBigInt; const B: Int64): Boolean;
|
|
|
|
begin
|
|
|
|
Result := A.CompareTo(B) = 0;
|
|
|
|
end;
|
|
|
|
|
|
|
|
end.
|
|
|
|
|