Compare commits

...

16 Commits

Author SHA1 Message Date
Andreas Schneider 73a7754742 Added option to rebuild the complete calendar 2018-04-09 13:07:59 +02:00
Andreas Schneider 8d8cc94213 Added command to create empty settings 2018-04-09 12:30:28 +02:00
Andreas Schneider 4d93b99cad Documented new features 2018-04-09 12:25:24 +02:00
Andreas Schneider 10b96ec705 Added option for reproducible build 2018-04-09 12:20:09 +02:00
Andreas Schneider cf04126d27 Moved modified package into main repo 2018-04-09 12:12:45 +02:00
Andreas Schneider 765f8fc077 Added build script 2018-04-08 21:37:38 +02:00
Andreas Schneider d7743b6ef2 Implemented whitelist (fixed #4) 2018-04-06 22:03:39 +02:00
Andreas Schneider 55f4f5f309 Prepare customizable title anonymization (#4) 2018-04-06 21:37:53 +02:00
Andreas Schneider eeb4c430b2 Fixed basic auth for EWS no longer working 2018-04-06 21:25:12 +02:00
Andreas Schneider 1844bd9e96 Implemented decrypt command (fixes #2) 2018-04-06 20:31:00 +02:00
Andreas Schneider dfd3ae592b Decrypt settings on start (#2) 2018-04-06 20:27:04 +02:00
Andreas Schneider d78809c9ee Implemented encryption (#2) 2018-04-06 20:09:52 +02:00
Andreas Schneider f3cf37bdb0 Prepare encrypt/decrypt commands (#2) 2018-04-06 19:33:20 +02:00
Andreas Schneider dc9594c3f8 Report error on command parsing 2018-04-06 19:19:45 +02:00
Andreas Schneider 58238a4e39 Added command handling (via cobra) 2018-04-06 19:16:43 +02:00
Andreas Schneider 3f84913b74 Fixed the way cancellation is determined (fixes #3) 2018-04-06 09:32:34 +02:00
89 changed files with 11093 additions and 47 deletions

View File

@ -41,7 +41,12 @@ A config file named `calanonsync.json` is opened from the working directory. It
"Password": ""
},
"Anonymize": {
"Title": "#Work"
"Title": {
"ReplaceWith": "#Work",
"Whitelist": [
"Something"
]
}
}
}
```
@ -49,3 +54,22 @@ A config file named `calanonsync.json` is opened from the working directory. It
Both passwords are optional. If they are left blank, CalAnonSync will prompt for the password upon startup. (Recommended for security reasons!)
The CalDAV URL should point to the URL of a dedicated calendar. Beware that CalAnonSync will remove **all** events from that calendar that are not known to Exchange.
### Whitelist
If words (or phrases) are whitelisted, matches within the title for these words (or phrases) will be used as the
new title instead of the replacement. The order of these matches within the original title is kept, all non matching
parts of the title are simply stripped.
### Encryption
If you want to automate the sync process your probably have not much of a choice but storing the passwords
in the config file. Since plaintext passwords are always a big risk, CalAnonSync at least provides a simple
layer of eavesdropping security.
Using `calanonsync settings encrypt` you can encrypt all passwords in the config file. With `calanonsync settings decrypt`
you can revert that process.
Beware, that the encryption key is simply stored in a file alongside the config so it is really easy to decrypt.
It doesn't provide any security against a real attack and is only meant to prevent someone from getting access
to the password by looking over your shoulder.

64
build.go Normal file
View File

@ -0,0 +1,64 @@
// +build ignore
package main
import (
"flag"
"os"
"os/exec"
"strings"
)
var reproducible = flag.Bool("r", false, "If set, the build will remove local directories from the debug infos.")
func main() {
flag.Parse()
env := os.Environ()
wd, err := os.Getwd()
if err != nil {
panic(err)
}
env = append(env, "GOPATH="+wd, "CGO_ENABLED=0")
args := []string{"build", "-ldflags=-s -w"}
if *reproducible {
args = append(args,
"-asmflags=all=-trimpath="+wd,
"-gcflags=all=-trimpath="+wd,
"-a",
)
}
if len(flag.Args()) == 1 {
target := flag.Arg(0)
targetParts := strings.Split(target, "/")
if len(targetParts) != 2 {
println("Invalid target specification. Example: windows/386")
os.Exit(1)
}
env = append(env,
"GOOS="+targetParts[0],
"GOARCH"+targetParts[1],
)
ext := ""
if targetParts[0] == "windows" {
ext = ".exe"
}
args = append(args, "-o", "calanonsync-"+targetParts[0]+"-"+targetParts[1]+ext)
}
args = append(args, "calanonsync")
cmd := exec.Command("go", args...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = env
err = cmd.Run()
if err != nil {
panic(err)
}
}

View File

@ -2,19 +2,22 @@
[[projects]]
branch = "master"
name = "github.com/ThomsonReutersEikon/go-ntlm"
packages = [
"ntlm",
"ntlm/md4"
]
revision = "2a7c173f9e18233a4ae29891da6a0a63637e2d8d"
name = "github.com/inconshreveable/mousetrap"
packages = ["."]
revision = "76626ae9c91c4f2a10f34cad8ce83ea42c93bb75"
version = "v1.0"
[[projects]]
branch = "master"
name = "github.com/vadimi/go-http-ntlm"
name = "github.com/spf13/cobra"
packages = ["."]
revision = "bc5a8d8d91a12dd386d3fa1019abb8bb681bdd41"
revision = "a1f051bc3eba734da4772d60e2d677f47cf93ef4"
version = "v0.0.2"
[[projects]]
name = "github.com/spf13/pflag"
packages = ["."]
revision = "e57e3eeb33f795204c1ca35f56c44f83227c6e66"
version = "v1.0.0"
[[projects]]
branch = "master"
@ -34,6 +37,6 @@
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "c47823b171022aea87501cabc3a33c2794c9352672de5255805a03a96f191f7d"
inputs-digest = "d2f5b5a67e95e173cd0d93a24576cdc1e5384e2bc0246f8cbed88838514b8ec0"
solver-name = "gps-cdcl"
solver-version = 1

View File

@ -24,6 +24,7 @@
# go-tests = true
# unused-packages = true
ignored = ["github.com/vadimi/go-http-ntlm"]
[prune]
go-tests = true
@ -34,9 +35,5 @@
name = "golang.org/x/crypto"
[[constraint]]
branch = "master"
name = "github.com/vadimi/go-http-ntlm"
[[constraint]]
branch = "master"
name = "github.com/Azure/go-ntlmssp"
name = "github.com/spf13/cobra"
version = "0.0.2"

View File

@ -1,11 +1,34 @@
package main
import (
"fmt"
"github.com/spf13/cobra"
"log"
"os"
"time"
)
var syncSettings = struct {
rebuild bool
}{}
func main() {
rootCmd := &cobra.Command{
Use: "calanonsync",
Short: "Synchronize a calendar from EWS to CalDAV by event time and an anonymized title only.",
Run: runSynchronization,
}
rootCmd.Flags().BoolVar(&syncSettings.rebuild, "rebuild", false, "Rebuild all calendar items, no matter if they already exist.")
rootCmd.AddCommand(InitSettingsCmd())
if err := rootCmd.Execute(); err != nil {
fmt.Println(err)
os.Exit(1)
}
}
func runSynchronization(cmd *cobra.Command, args []string) {
s := LoadSettings()
e := NewEWSCalendar(s.EWS.URL, s.EWS.Username, s.EWS.Password)
@ -25,7 +48,7 @@ func main() {
for _, item := range items {
// Ignore private items.
if item.Sensitivity != "Private" && !item.IsCancelled {
if item.Sensitivity != "Private" && !item.IsCancelled() {
// None-private items though ... remember them by hash.
// The hash will equal the CalDAV UID (and its filename).
relevantEWSItems[item.Hash()] = item
@ -48,6 +71,13 @@ func main() {
for uid, calDavItem := range calDavItemMap {
if ewsItem, ok := relevantEWSItems[uid]; ok {
// Good, so we still know the item at least.
// If we want a full rebuild, we can skip this step
// since we will create new items anyway.
if syncSettings.rebuild {
continue
}
if !ewsItem.Start.Equal(calDavItem.Start()) ||
!ewsItem.End.Equal(calDavItem.End()) {
@ -74,14 +104,10 @@ func main() {
}
}
// Find items we don't know so far and create them.
// Find items we don't know so far and create them. Also recreate them if we want to rebuild all.
for uid, ewsItem := range relevantEWSItems {
if _, ok := calDavItemMap[uid]; !ok {
title := s.Anonymize.Title
if title == "" {
// No anonymization? Fine.
title = ewsItem.Subject
}
if _, ok := calDavItemMap[uid]; !ok || syncSettings.rebuild {
title := s.Anonymize.Title.Apply(ewsItem.Subject)
ical := CreateICal(ewsItem.Hash(), title, ewsItem.Start, ewsItem.End, ewsItem.IsAllDayEvent)
calDavItem := CalDAVItem{HRef: uid + ".ics", ICal: ical}

View File

@ -29,10 +29,18 @@ type CalendarItem struct {
RecurrenceId string
Sensitivity string
CalendarItemType string
IsCancelled bool
AppointmentState AppointmentState
IsAllDayEvent bool
}
type AppointmentState int
const (
AppointmentStateMeeting AppointmentState = 1 << iota // This appointment is a meeting.
AppointmentStateReceived // This appointment has been received.
AppointmentStateCancelled // This appointment has been canceled.
)
// Build a hash for the given calendar item by combining the UID and
// the recurrenceId therefore guaranteeing a unique identifier for the
// event, even if it has been a calculated recurrence (which would
@ -44,6 +52,10 @@ func (ci CalendarItem) Hash() string {
return strings.ToUpper(hex.EncodeToString(h.Sum(nil)))
}
func (ci CalendarItem) IsCancelled() bool {
return ci.AppointmentState&AppointmentStateCancelled != 0
}
type EWSCalendar struct {
httpClient *http.Client
url string
@ -75,7 +87,7 @@ func (er EWSRoundTripper) RoundTrip(r *http.Request) (*http.Response, error) {
authHeaders := resp.Header["Www-Authenticate"]
if authHeaders != nil {
for _, h := range authHeaders {
if strings.HasPrefix(h, "BASIC") {
if strings.HasPrefix(h, "Basic") {
er.authType = authTypeBasic
} else if strings.HasPrefix(h, "NTLM") {
er.authType = authTypeNTLM
@ -262,7 +274,7 @@ var calendarQuery = template.Must(template.New("calendarQuery").Parse(`<?xml ver
<t:FieldURI FieldURI="calendar:End" />
<t:FieldURI FieldURI="calendar:UID" />
<t:FieldURI FieldURI="calendar:RecurrenceId" />
<t:FieldURI FieldURI="calendar:IsCancelled" />
<t:FieldURI FieldURI="calendar:AppointmentState" />
<t:FieldURI FieldURI="calendar:CalendarItemType" />
<t:FieldURI FieldURI="calendar:IsAllDayEvent" />
</t:AdditionalProperties>

View File

@ -1,9 +1,18 @@
package main
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/base64"
"encoding/json"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh/terminal"
"io"
"io/ioutil"
"log"
"os"
"sort"
"strings"
"syscall"
)
@ -14,32 +23,24 @@ type ServerSettings struct {
Password string
}
type StringAnonSettings struct {
ReplaceWith string
Whitelist []string
}
type Settings struct {
EWS ServerSettings
CalDAV ServerSettings
Anonymize struct {
Title string
Title *StringAnonSettings
}
}
func ensurePassword(password *string, name string) {
if *password != "" {
// Nothing to do. Password already set.
return
}
print(name + " password: ")
b, err := terminal.ReadPassword(int(syscall.Stdin))
println()
if err != nil {
panic(err)
}
*password = string(b)
}
const settingsName = "calanonsync.json"
const keyName = ".calanonsync.key"
func LoadSettings() Settings {
f, err := os.Open("calanonsync.json")
f, err := os.Open(settingsName)
if err != nil {
panic(err)
}
@ -53,8 +54,260 @@ func LoadSettings() Settings {
settings.CalDAV.URL += "/"
}
// Load a key if possible.
var key []byte = nil
keyString, err := ioutil.ReadFile(keyName)
if err == nil {
key, err = base64.StdEncoding.DecodeString(string(keyString))
if err != nil {
log.Fatalf("Could not load encryption key: %s\n", err)
}
} else if !os.IsNotExist(err) {
log.Fatalf("Could not load encryption key: %s\n", err)
}
ensurePassword := func(password *string, name string) {
if *password == "" {
print(name + " password: ")
b, err := terminal.ReadPassword(int(syscall.Stdin))
println()
if err != nil {
panic(err)
}
*password = string(b)
} else if key != nil {
// Password already set. Since we have an encryption key, try to
// decrypt the password.
pwbytes, err := base64.StdEncoding.DecodeString(*password)
if err != nil {
log.Fatalf("Could not decode password: %s\n", err)
}
block, err := aes.NewCipher(key)
if err != nil {
log.Fatalf("Could not create cipher: %s\n", err)
}
if len(pwbytes) < block.BlockSize() {
log.Fatalln("Could not decrypt password. Encrypted stream is too short.")
}
iv := pwbytes[:aes.BlockSize]
result := pwbytes[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
stream.XORKeyStream(result, result)
*password = string(result)
}
}
ensurePassword(&settings.EWS.Password, "EWS")
ensurePassword(&settings.CalDAV.Password, "CalDAV")
return settings
}
func InitSettingsCmd() *cobra.Command {
settingsCmd := &cobra.Command{
Use: "settings",
Short: "Manage settings.",
}
encryptCmd := &cobra.Command{
Use: "encrypt",
Short: "Encrypt the passwords in the settings file.",
Long: `This will encrypt the passwords in the settings file that are
not empty. It will generate a new "master" password and store that alongside
the settings file. This is NOT secure, it just helps to prevent
over-the-shoulder "attacks".`,
Run: runSettingsEncryption,
}
decryptCmd := &cobra.Command{
Use: "decrypt",
Short: "Decrypt a previously encrypted settings file.",
Run: runSettingsDecryption,
}
initCmd := &cobra.Command{
Use: "init",
Short: "Initialize an empty but valid settings file.",
Run: runSettingsInit,
}
settingsCmd.AddCommand(encryptCmd, decryptCmd, initCmd)
return settingsCmd
}
func runSettingsEncryption(cmd *cobra.Command, args []string) {
s := LoadSettings()
if _, err := os.Stat(keyName); err == nil || os.IsExist(err) {
log.Fatalln("Cannot encrypt an (apparently) already encrypted settings file. If this is an error, please remove .calanonsync.key and try again.")
}
// Generate a secure 256 bit key.
key := make([]byte, 32)
if n, err := rand.Read(key); n != 32 || err != nil {
log.Fatalf("Could not get random 256 bit key: %s (%d)\n", err, n)
}
block, err := aes.NewCipher(key)
if err != nil {
log.Fatalf("Could not create cipher: %s\n", err)
}
doEncrypt := func(pwd *string) {
if *pwd != "" {
result := make([]byte, aes.BlockSize+len(*pwd))
// Prepare the initialization vector
iv := result[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(result[aes.BlockSize:], []byte(*pwd))
*pwd = base64.StdEncoding.EncodeToString(result)
}
}
doEncrypt(&s.EWS.Password)
doEncrypt(&s.CalDAV.Password)
if s.EWS.Password == "" && s.CalDAV.Password == "" {
log.Fatalf("No passwords found. Nothing to encrypt.")
}
// Rewrite the settings file.
f, err := os.OpenFile(settingsName, os.O_WRONLY|os.O_TRUNC, 0600)
if err != nil {
log.Fatalf("Could not rewrite settings: %s\n", err)
}
defer f.Close()
e := json.NewEncoder(f)
e.SetIndent("", " ")
err = e.Encode(&s)
if err != nil {
panic(err)
}
f, err = os.OpenFile(keyName, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0600)
if err != nil {
log.Fatalf("Could not write keyfile: %s\n", err)
}
defer f.Close()
ks := base64.StdEncoding.EncodeToString(key)
_, err = f.WriteString(ks)
if err != nil {
panic(err)
}
log.Println("Settings encrypted")
}
func runSettingsDecryption(cmd *cobra.Command, args []string) {
s := LoadSettings()
// Rewrite the settings file.
f, err := os.OpenFile(settingsName, os.O_WRONLY|os.O_TRUNC, 0600)
if err != nil {
log.Fatalf("Could not rewrite settings: %s\n", err)
}
defer f.Close()
e := json.NewEncoder(f)
e.SetIndent("", " ")
err = e.Encode(&s)
if err != nil {
panic(err)
}
err = os.Remove(keyName)
if err != nil {
log.Fatalf("Could not remove key file: %s\n", err)
}
log.Println("Settings decrypted")
}
func runSettingsInit(cmd *cobra.Command, args []string) {
if _, err := os.Stat(settingsName); err == nil || os.IsExist(err) {
log.Fatalln("You already have a settings file! Remove that first if you really want a new blank one!")
}
s := Settings{}
s.Anonymize.Title = &StringAnonSettings{ReplaceWith: "Replacement", Whitelist: []string{}}
// Rewrite the settings file.
f, err := os.OpenFile(settingsName, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0600)
if err != nil {
log.Fatalf("Could not rewrite settings: %s\n", err)
}
defer f.Close()
e := json.NewEncoder(f)
e.SetIndent("", " ")
err = e.Encode(&s)
if err != nil {
panic(err)
}
log.Println("Blank settings have been created.")
}
// Apply the anonymization rule to the given string, returning the
// anonymized version.
// If the anonymization is nil or empty, the original string will
// be returned (since no anonymization is wanted, apparently).
// If no whitelist is given or nothing within the whitelist is
// found inside the string, the ReplaceWith string is returned.
//
// If a whitelist is used, ALL entries that were found in the original
// string will be concatenated and returned as the result. The order
// as found in the original string is kept.
//
// The whitelist is considered case insensitive!
//
func (settings *StringAnonSettings) Apply(s string) string {
if settings == nil || settings.ReplaceWith == "" {
return s
}
if settings.Whitelist != nil {
// We have a whitelist. Try to find all matches in appropriate order.
type match struct {
index int
entry int
}
lowerString := strings.ToLower(s)
var matches []match
for i := range settings.Whitelist {
m := match{entry: i}
m.index = strings.Index(lowerString, strings.ToLower(settings.Whitelist[i]))
if m.index > -1 {
matches = append(matches, m)
}
}
if matches != nil {
// Oh, we have matches. Good. Sort them by original
// index within the string so we have a chance of a
// meaningful title.
sort.SliceStable(matches, func(i, j int) bool {
return matches[i].index < matches[j].index
})
sb := &strings.Builder{}
for i := range matches {
if i > 0 {
sb.WriteString(" ")
}
sb.WriteString(settings.Whitelist[matches[i].entry])
}
return sb.String()
}
}
return settings.ReplaceWith
}

View File

@ -0,0 +1,70 @@
package main
import "testing"
func TestStringAnonSettings_Apply(t *testing.T) {
t.Run("Not replaced when nil", func(t *testing.T) {
title := "Test"
var anonTitle *StringAnonSettings = nil
if anonTitle.Apply(title) != title {
t.Fatal("The title should be unchanged.")
}
})
t.Run("Not replaced when empty", func(t *testing.T) {
title := "Test"
anonTitle := &StringAnonSettings{ReplaceWith: ""}
if anonTitle.Apply(title) != title {
t.Fatal("The title should be unchanged.")
}
})
t.Run("With whitelist", func(t *testing.T) {
anonTitle := &StringAnonSettings{
ReplaceWith: "#Replaced",
Whitelist: []string{
"lower",
"Test",
"With Space",
},
}
t.Run("No match", func(t *testing.T) {
if anonTitle.Apply("unrelated title") != "#Replaced" {
t.Fatal("The title should have been replaced.")
}
})
t.Run("Word found", func(t *testing.T) {
if anonTitle.Apply("This is a Test title.") != "Test" {
t.Fatal("One word should have matched.")
}
})
t.Run("Case ignored", func(t *testing.T) {
if anonTitle.Apply("Something with LOWER case.") != "lower" {
t.Fatal("The lower case variant should have matched.")
}
})
t.Run("Match with space", func(t *testing.T) {
if anonTitle.Apply("A title With Space") != "With Space" {
t.Fatal("A match with space should be found.")
}
})
t.Run("Multiple matches", func(t *testing.T) {
if anonTitle.Apply("Some lower title Test") != "lower Test" {
t.Fatal("Multiple matches should be concatenated.")
}
})
t.Run("Multiple matches keep their order", func(t *testing.T) {
if anonTitle.Apply("Test title with lower order") != "Test lower" {
t.Fatal("The original order should be kept")
}
})
})
}

View File

@ -0,0 +1,13 @@
Copyright 2014 Alan Shreve
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,23 @@
# mousetrap
mousetrap is a tiny library that answers a single question.
On a Windows machine, was the process invoked by someone double clicking on
the executable file while browsing in explorer?
### Motivation
Windows developers unfamiliar with command line tools will often "double-click"
the executable for a tool. Because most CLI tools print the help and then exit
when invoked without arguments, this is often very frustrating for those users.
mousetrap provides a way to detect these invocations so that you can provide
more helpful behavior and instructions on how to run the CLI tool. To see what
this looks like, both from an organizational and a technical perspective, see
https://inconshreveable.com/09-09-2014/sweat-the-small-stuff/
### The interface
The library exposes a single interface:
func StartedByExplorer() (bool)

View File

@ -0,0 +1,15 @@
// +build !windows
package mousetrap
// StartedByExplorer returns true if the program was invoked by the user
// double-clicking on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
//
// On non-Windows platforms, it always returns false.
func StartedByExplorer() bool {
return false
}

View File

@ -0,0 +1,98 @@
// +build windows
// +build !go1.4
package mousetrap
import (
"fmt"
"os"
"syscall"
"unsafe"
)
const (
// defined by the Win32 API
th32cs_snapprocess uintptr = 0x2
)
var (
kernel = syscall.MustLoadDLL("kernel32.dll")
CreateToolhelp32Snapshot = kernel.MustFindProc("CreateToolhelp32Snapshot")
Process32First = kernel.MustFindProc("Process32FirstW")
Process32Next = kernel.MustFindProc("Process32NextW")
)
// ProcessEntry32 structure defined by the Win32 API
type processEntry32 struct {
dwSize uint32
cntUsage uint32
th32ProcessID uint32
th32DefaultHeapID int
th32ModuleID uint32
cntThreads uint32
th32ParentProcessID uint32
pcPriClassBase int32
dwFlags uint32
szExeFile [syscall.MAX_PATH]uint16
}
func getProcessEntry(pid int) (pe *processEntry32, err error) {
snapshot, _, e1 := CreateToolhelp32Snapshot.Call(th32cs_snapprocess, uintptr(0))
if snapshot == uintptr(syscall.InvalidHandle) {
err = fmt.Errorf("CreateToolhelp32Snapshot: %v", e1)
return
}
defer syscall.CloseHandle(syscall.Handle(snapshot))
var processEntry processEntry32
processEntry.dwSize = uint32(unsafe.Sizeof(processEntry))
ok, _, e1 := Process32First.Call(snapshot, uintptr(unsafe.Pointer(&processEntry)))
if ok == 0 {
err = fmt.Errorf("Process32First: %v", e1)
return
}
for {
if processEntry.th32ProcessID == uint32(pid) {
pe = &processEntry
return
}
ok, _, e1 = Process32Next.Call(snapshot, uintptr(unsafe.Pointer(&processEntry)))
if ok == 0 {
err = fmt.Errorf("Process32Next: %v", e1)
return
}
}
}
func getppid() (pid int, err error) {
pe, err := getProcessEntry(os.Getpid())
if err != nil {
return
}
pid = int(pe.th32ParentProcessID)
return
}
// StartedByExplorer returns true if the program was invoked by the user double-clicking
// on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
func StartedByExplorer() bool {
ppid, err := getppid()
if err != nil {
return false
}
pe, err := getProcessEntry(ppid)
if err != nil {
return false
}
name := syscall.UTF16ToString(pe.szExeFile[:])
return name == "explorer.exe"
}

View File

@ -0,0 +1,46 @@
// +build windows
// +build go1.4
package mousetrap
import (
"os"
"syscall"
"unsafe"
)
func getProcessEntry(pid int) (*syscall.ProcessEntry32, error) {
snapshot, err := syscall.CreateToolhelp32Snapshot(syscall.TH32CS_SNAPPROCESS, 0)
if err != nil {
return nil, err
}
defer syscall.CloseHandle(snapshot)
var procEntry syscall.ProcessEntry32
procEntry.Size = uint32(unsafe.Sizeof(procEntry))
if err = syscall.Process32First(snapshot, &procEntry); err != nil {
return nil, err
}
for {
if procEntry.ProcessID == uint32(pid) {
return &procEntry, nil
}
err = syscall.Process32Next(snapshot, &procEntry)
if err != nil {
return nil, err
}
}
}
// StartedByExplorer returns true if the program was invoked by the user double-clicking
// on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
func StartedByExplorer() bool {
pe, err := getProcessEntry(os.Getppid())
if err != nil {
return false
}
return "explorer.exe" == syscall.UTF16ToString(pe.ExeFile[:])
}

View File

@ -0,0 +1,36 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
# Vim files https://github.com/github/gitignore/blob/master/Global/Vim.gitignore
# swap
[._]*.s[a-w][a-z]
[._]s[a-w][a-z]
# session
Session.vim
# temporary
.netrwhist
*~
# auto-generated tag files
tags
*.exe
cobra.test

View File

@ -0,0 +1,3 @@
Steve Francia <steve.francia@gmail.com>
Bjørn Erik Pedersen <bjorn.erik.pedersen@gmail.com>
Fabiano Franz <ffranz@redhat.com> <contact@fabianofranz.com>

View File

@ -0,0 +1,21 @@
language: go
matrix:
include:
- go: 1.9.4
- go: 1.10.0
- go: tip
allow_failures:
- go: tip
before_install:
- mkdir -p bin
- curl -Lso bin/shellcheck https://github.com/caarlos0/shellcheck-docker/releases/download/v0.4.3/shellcheck
- chmod +x bin/shellcheck
script:
- PATH=$PATH:$PWD/bin go test -v ./...
- go build
- diff -u <(echo -n) <(gofmt -d -s .)
- if [ -z $NOVET ]; then
diff -u <(echo -n) <(go tool vet . 2>&1 | grep -vE 'ExampleCommand|bash_completions.*Fprint');
fi

View File

@ -0,0 +1,174 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

736
src/calanonsync/vendor/github.com/spf13/cobra/README.md generated vendored Normal file
View File

@ -0,0 +1,736 @@
![cobra logo](https://cloud.githubusercontent.com/assets/173412/10886352/ad566232-814f-11e5-9cd0-aa101788c117.png)
Cobra is both a library for creating powerful modern CLI applications as well as a program to generate applications and command files.
Many of the most widely used Go projects are built using Cobra including:
* [Kubernetes](http://kubernetes.io/)
* [Hugo](http://gohugo.io)
* [rkt](https://github.com/coreos/rkt)
* [etcd](https://github.com/coreos/etcd)
* [Moby (former Docker)](https://github.com/moby/moby)
* [Docker (distribution)](https://github.com/docker/distribution)
* [OpenShift](https://www.openshift.com/)
* [Delve](https://github.com/derekparker/delve)
* [GopherJS](http://www.gopherjs.org/)
* [CockroachDB](http://www.cockroachlabs.com/)
* [Bleve](http://www.blevesearch.com/)
* [ProjectAtomic (enterprise)](http://www.projectatomic.io/)
* [GiantSwarm's swarm](https://github.com/giantswarm/cli)
* [Nanobox](https://github.com/nanobox-io/nanobox)/[Nanopack](https://github.com/nanopack)
* [rclone](http://rclone.org/)
* [nehm](https://github.com/bogem/nehm)
* [Pouch](https://github.com/alibaba/pouch)
[![Build Status](https://travis-ci.org/spf13/cobra.svg "Travis CI status")](https://travis-ci.org/spf13/cobra)
[![CircleCI status](https://circleci.com/gh/spf13/cobra.png?circle-token=:circle-token "CircleCI status")](https://circleci.com/gh/spf13/cobra)
[![GoDoc](https://godoc.org/github.com/spf13/cobra?status.svg)](https://godoc.org/github.com/spf13/cobra)
# Table of Contents
- [Overview](#overview)
- [Concepts](#concepts)
* [Commands](#commands)
* [Flags](#flags)
- [Installing](#installing)
- [Getting Started](#getting-started)
* [Using the Cobra Generator](#using-the-cobra-generator)
* [Using the Cobra Library](#using-the-cobra-library)
* [Working with Flags](#working-with-flags)
* [Positional and Custom Arguments](#positional-and-custom-arguments)
* [Example](#example)
* [Help Command](#help-command)
* [Usage Message](#usage-message)
* [PreRun and PostRun Hooks](#prerun-and-postrun-hooks)
* [Suggestions when "unknown command" happens](#suggestions-when-unknown-command-happens)
* [Generating documentation for your command](#generating-documentation-for-your-command)
* [Generating bash completions](#generating-bash-completions)
- [Contributing](#contributing)
- [License](#license)
# Overview
Cobra is a library providing a simple interface to create powerful modern CLI
interfaces similar to git & go tools.
Cobra is also an application that will generate your application scaffolding to rapidly
develop a Cobra-based application.
Cobra provides:
* Easy subcommand-based CLIs: `app server`, `app fetch`, etc.
* Fully POSIX-compliant flags (including short & long versions)
* Nested subcommands
* Global, local and cascading flags
* Easy generation of applications & commands with `cobra init appname` & `cobra add cmdname`
* Intelligent suggestions (`app srver`... did you mean `app server`?)
* Automatic help generation for commands and flags
* Automatic help flag recognition of `-h`, `--help`, etc.
* Automatically generated bash autocomplete for your application
* Automatically generated man pages for your application
* Command aliases so you can change things without breaking them
* The flexibility to define your own help, usage, etc.
* Optional tight integration with [viper](http://github.com/spf13/viper) for 12-factor apps
# Concepts
Cobra is built on a structure of commands, arguments & flags.
**Commands** represent actions, **Args** are things and **Flags** are modifiers for those actions.
The best applications will read like sentences when used. Users will know how
to use the application because they will natively understand how to use it.
The pattern to follow is
`APPNAME VERB NOUN --ADJECTIVE.`
or
`APPNAME COMMAND ARG --FLAG`
A few good real world examples may better illustrate this point.
In the following example, 'server' is a command, and 'port' is a flag:
hugo server --port=1313
In this command we are telling Git to clone the url bare.
git clone URL --bare
## Commands
Command is the central point of the application. Each interaction that
the application supports will be contained in a Command. A command can
have children commands and optionally run an action.
In the example above, 'server' is the command.
[More about cobra.Command](https://godoc.org/github.com/spf13/cobra#Command)
## Flags
A flag is a way to modify the behavior of a command. Cobra supports
fully POSIX-compliant flags as well as the Go [flag package](https://golang.org/pkg/flag/).
A Cobra command can define flags that persist through to children commands
and flags that are only available to that command.
In the example above, 'port' is the flag.
Flag functionality is provided by the [pflag
library](https://github.com/spf13/pflag), a fork of the flag standard library
which maintains the same interface while adding POSIX compliance.
# Installing
Using Cobra is easy. First, use `go get` to install the latest version
of the library. This command will install the `cobra` generator executable
along with the library and its dependencies:
go get -u github.com/spf13/cobra/cobra
Next, include Cobra in your application:
```go
import "github.com/spf13/cobra"
```
# Getting Started
While you are welcome to provide your own organization, typically a Cobra-based
application will follow the following organizational structure:
```
▾ appName/
▾ cmd/
add.go
your.go
commands.go
here.go
main.go
```
In a Cobra app, typically the main.go file is very bare. It serves one purpose: initializing Cobra.
```go
package main
import (
"fmt"
"os"
"{pathToYourApp}/cmd"
)
func main() {
cmd.Execute()
}
```
## Using the Cobra Generator
Cobra provides its own program that will create your application and add any
commands you want. It's the easiest way to incorporate Cobra into your application.
[Here](https://github.com/spf13/cobra/blob/master/cobra/README.md) you can find more information about it.
## Using the Cobra Library
To manually implement Cobra you need to create a bare main.go file and a rootCmd file.
You will optionally provide additional commands as you see fit.
### Create rootCmd
Cobra doesn't require any special constructors. Simply create your commands.
Ideally you place this in app/cmd/root.go:
```go
var rootCmd = &cobra.Command{
Use: "hugo",
Short: "Hugo is a very fast static site generator",
Long: `A Fast and Flexible Static Site Generator built with
love by spf13 and friends in Go.
Complete documentation is available at http://hugo.spf13.com`,
Run: func(cmd *cobra.Command, args []string) {
// Do Stuff Here
},
}
func Execute() {
if err := rootCmd.Execute(); err != nil {
fmt.Println(err)
os.Exit(1)
}
}
```
You will additionally define flags and handle configuration in your init() function.
For example cmd/root.go:
```go
import (
"fmt"
"os"
homedir "github.com/mitchellh/go-homedir"
"github.com/spf13/cobra"
"github.com/spf13/viper"
)
func init() {
cobra.OnInitialize(initConfig)
rootCmd.PersistentFlags().StringVar(&cfgFile, "config", "", "config file (default is $HOME/.cobra.yaml)")
rootCmd.PersistentFlags().StringVarP(&projectBase, "projectbase", "b", "", "base project directory eg. github.com/spf13/")
rootCmd.PersistentFlags().StringP("author", "a", "YOUR NAME", "Author name for copyright attribution")
rootCmd.PersistentFlags().StringVarP(&userLicense, "license", "l", "", "Name of license for the project (can provide `licensetext` in config)")
rootCmd.PersistentFlags().Bool("viper", true, "Use Viper for configuration")
viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
viper.BindPFlag("projectbase", rootCmd.PersistentFlags().Lookup("projectbase"))
viper.BindPFlag("useViper", rootCmd.PersistentFlags().Lookup("viper"))
viper.SetDefault("author", "NAME HERE <EMAIL ADDRESS>")
viper.SetDefault("license", "apache")
}
func initConfig() {
// Don't forget to read config either from cfgFile or from home directory!
if cfgFile != "" {
// Use config file from the flag.
viper.SetConfigFile(cfgFile)
} else {
// Find home directory.
home, err := homedir.Dir()
if err != nil {
fmt.Println(err)
os.Exit(1)
}
// Search config in home directory with name ".cobra" (without extension).
viper.AddConfigPath(home)
viper.SetConfigName(".cobra")
}
if err := viper.ReadInConfig(); err != nil {
fmt.Println("Can't read config:", err)
os.Exit(1)
}
}
```
### Create your main.go
With the root command you need to have your main function execute it.
Execute should be run on the root for clarity, though it can be called on any command.
In a Cobra app, typically the main.go file is very bare. It serves, one purpose, to initialize Cobra.
```go
package main
import (
"fmt"
"os"
"{pathToYourApp}/cmd"
)
func main() {
cmd.Execute()
}
```
### Create additional commands
Additional commands can be defined and typically are each given their own file
inside of the cmd/ directory.
If you wanted to create a version command you would create cmd/version.go and
populate it with the following:
```go
package cmd
import (
"fmt"
"github.com/spf13/cobra"
)
func init() {
rootCmd.AddCommand(versionCmd)
}
var versionCmd = &cobra.Command{
Use: "version",
Short: "Print the version number of Hugo",
Long: `All software has versions. This is Hugo's`,
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Hugo Static Site Generator v0.9 -- HEAD")
},
}
```
## Working with Flags
Flags provide modifiers to control how the action command operates.
### Assign flags to a command
Since the flags are defined and used in different locations, we need to
define a variable outside with the correct scope to assign the flag to
work with.
```go
var Verbose bool
var Source string
```
There are two different approaches to assign a flag.
### Persistent Flags
A flag can be 'persistent' meaning that this flag will be available to the
command it's assigned to as well as every command under that command. For
global flags, assign a flag as a persistent flag on the root.
```go
rootCmd.PersistentFlags().BoolVarP(&Verbose, "verbose", "v", false, "verbose output")
```
### Local Flags
A flag can also be assigned locally which will only apply to that specific command.
```go
rootCmd.Flags().StringVarP(&Source, "source", "s", "", "Source directory to read from")
```
### Local Flag on Parent Commands
By default Cobra only parses local flags on the target command, any local flags on
parent commands are ignored. By enabling `Command.TraverseChildren` Cobra will
parse local flags on each command before executing the target command.
```go
command := cobra.Command{
Use: "print [OPTIONS] [COMMANDS]",
TraverseChildren: true,
}
```
### Bind Flags with Config
You can also bind your flags with [viper](https://github.com/spf13/viper):
```go
var author string
func init() {
rootCmd.PersistentFlags().StringVar(&author, "author", "YOUR NAME", "Author name for copyright attribution")
viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
}
```
In this example the persistent flag `author` is bound with `viper`.
**Note**, that the variable `author` will not be set to the value from config,
when the `--author` flag is not provided by user.
More in [viper documentation](https://github.com/spf13/viper#working-with-flags).
### Required flags
Flags are optional by default. If instead you wish your command to report an error
when a flag has not been set, mark it as required:
```go
rootCmd.Flags().StringVarP(&Region, "region", "r", "", "AWS region (required)")
rootCmd.MarkFlagRequired("region")
```
## Positional and Custom Arguments
Validation of positional arguments can be specified using the `Args` field
of `Command`.
The following validators are built in:
- `NoArgs` - the command will report an error if there are any positional args.
- `ArbitraryArgs` - the command will accept any args.
- `OnlyValidArgs` - the command will report an error if there are any positional args that are not in the `ValidArgs` field of `Command`.
- `MinimumNArgs(int)` - the command will report an error if there are not at least N positional args.
- `MaximumNArgs(int)` - the command will report an error if there are more than N positional args.
- `ExactArgs(int)` - the command will report an error if there are not exactly N positional args.
- `RangeArgs(min, max)` - the command will report an error if the number of args is not between the minimum and maximum number of expected args.
An example of setting the custom validator:
```go
var cmd = &cobra.Command{
Short: "hello",
Args: func(cmd *cobra.Command, args []string) error {
if len(args) < 1 {
return errors.New("requires at least one arg")
}
if myapp.IsValidColor(args[0]) {
return nil
}
return fmt.Errorf("invalid color specified: %s", args[0])
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Hello, World!")
},
}
```
## Example
In the example below, we have defined three commands. Two are at the top level
and one (cmdTimes) is a child of one of the top commands. In this case the root
is not executable meaning that a subcommand is required. This is accomplished
by not providing a 'Run' for the 'rootCmd'.
We have only defined one flag for a single command.
More documentation about flags is available at https://github.com/spf13/pflag
```go
package main
import (
"fmt"
"strings"
"github.com/spf13/cobra"
)
func main() {
var echoTimes int
var cmdPrint = &cobra.Command{
Use: "print [string to print]",
Short: "Print anything to the screen",
Long: `print is for printing anything back to the screen.
For many years people have printed back to the screen.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Print: " + strings.Join(args, " "))
},
}
var cmdEcho = &cobra.Command{
Use: "echo [string to echo]",
Short: "Echo anything to the screen",
Long: `echo is for echoing anything back.
Echo works a lot like print, except it has a child command.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Print: " + strings.Join(args, " "))
},
}
var cmdTimes = &cobra.Command{
Use: "times [# times] [string to echo]",
Short: "Echo anything to the screen more times",
Long: `echo things multiple times back to the user by providing
a count and a string.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
for i := 0; i < echoTimes; i++ {
fmt.Println("Echo: " + strings.Join(args, " "))
}
},
}
cmdTimes.Flags().IntVarP(&echoTimes, "times", "t", 1, "times to echo the input")
var rootCmd = &cobra.Command{Use: "app"}
rootCmd.AddCommand(cmdPrint, cmdEcho)
cmdEcho.AddCommand(cmdTimes)
rootCmd.Execute()
}
```
For a more complete example of a larger application, please checkout [Hugo](http://gohugo.io/).
## Help Command
Cobra automatically adds a help command to your application when you have subcommands.
This will be called when a user runs 'app help'. Additionally, help will also
support all other commands as input. Say, for instance, you have a command called
'create' without any additional configuration; Cobra will work when 'app help
create' is called. Every command will automatically have the '--help' flag added.
### Example
The following output is automatically generated by Cobra. Nothing beyond the
command and flag definitions are needed.
$ cobra help
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.
Usage:
cobra [command]
Available Commands:
add Add a command to a Cobra Application
help Help about any command
init Initialize a Cobra Application
Flags:
-a, --author string author name for copyright attribution (default "YOUR NAME")
--config string config file (default is $HOME/.cobra.yaml)
-h, --help help for cobra
-l, --license string name of license for the project
--viper use Viper for configuration (default true)
Use "cobra [command] --help" for more information about a command.
Help is just a command like any other. There is no special logic or behavior
around it. In fact, you can provide your own if you want.
### Defining your own help
You can provide your own Help command or your own template for the default command to use
with following functions:
```go
cmd.SetHelpCommand(cmd *Command)
cmd.SetHelpFunc(f func(*Command, []string))
cmd.SetHelpTemplate(s string)
```
The latter two will also apply to any children commands.
## Usage Message
When the user provides an invalid flag or invalid command, Cobra responds by
showing the user the 'usage'.
### Example
You may recognize this from the help above. That's because the default help
embeds the usage as part of its output.
$ cobra --invalid
Error: unknown flag: --invalid
Usage:
cobra [command]
Available Commands:
add Add a command to a Cobra Application
help Help about any command
init Initialize a Cobra Application
Flags:
-a, --author string author name for copyright attribution (default "YOUR NAME")
--config string config file (default is $HOME/.cobra.yaml)
-h, --help help for cobra
-l, --license string name of license for the project
--viper use Viper for configuration (default true)
Use "cobra [command] --help" for more information about a command.
### Defining your own usage
You can provide your own usage function or template for Cobra to use.
Like help, the function and template are overridable through public methods:
```go
cmd.SetUsageFunc(f func(*Command) error)
cmd.SetUsageTemplate(s string)
```
## Version Flag
Cobra adds a top-level '--version' flag if the Version field is set on the root command.
Running an application with the '--version' flag will print the version to stdout using
the version template. The template can be customized using the
`cmd.SetVersionTemplate(s string)` function.
## PreRun and PostRun Hooks
It is possible to run functions before or after the main `Run` function of your command. The `PersistentPreRun` and `PreRun` functions will be executed before `Run`. `PersistentPostRun` and `PostRun` will be executed after `Run`. The `Persistent*Run` functions will be inherited by children if they do not declare their own. These functions are run in the following order:
- `PersistentPreRun`
- `PreRun`
- `Run`
- `PostRun`
- `PersistentPostRun`
An example of two commands which use all of these features is below. When the subcommand is executed, it will run the root command's `PersistentPreRun` but not the root command's `PersistentPostRun`:
```go
package main
import (
"fmt"
"github.com/spf13/cobra"
)
func main() {
var rootCmd = &cobra.Command{
Use: "root [sub]",
Short: "My root command",
PersistentPreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PersistentPreRun with args: %v\n", args)
},
PreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PreRun with args: %v\n", args)
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd Run with args: %v\n", args)
},
PostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PostRun with args: %v\n", args)
},
PersistentPostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PersistentPostRun with args: %v\n", args)
},
}
var subCmd = &cobra.Command{
Use: "sub [no options!]",
Short: "My subcommand",
PreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PreRun with args: %v\n", args)
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd Run with args: %v\n", args)
},
PostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PostRun with args: %v\n", args)
},
PersistentPostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PersistentPostRun with args: %v\n", args)
},
}
rootCmd.AddCommand(subCmd)
rootCmd.SetArgs([]string{""})
rootCmd.Execute()
fmt.Println()
rootCmd.SetArgs([]string{"sub", "arg1", "arg2"})
rootCmd.Execute()
}
```
Output:
```
Inside rootCmd PersistentPreRun with args: []
Inside rootCmd PreRun with args: []
Inside rootCmd Run with args: []
Inside rootCmd PostRun with args: []
Inside rootCmd PersistentPostRun with args: []
Inside rootCmd PersistentPreRun with args: [arg1 arg2]
Inside subCmd PreRun with args: [arg1 arg2]
Inside subCmd Run with args: [arg1 arg2]
Inside subCmd PostRun with args: [arg1 arg2]
Inside subCmd PersistentPostRun with args: [arg1 arg2]
```
## Suggestions when "unknown command" happens
Cobra will print automatic suggestions when "unknown command" errors happen. This allows Cobra to behave similarly to the `git` command when a typo happens. For example:
```
$ hugo srever
Error: unknown command "srever" for "hugo"
Did you mean this?
server
Run 'hugo --help' for usage.
```
Suggestions are automatic based on every subcommand registered and use an implementation of [Levenshtein distance](http://en.wikipedia.org/wiki/Levenshtein_distance). Every registered command that matches a minimum distance of 2 (ignoring case) will be displayed as a suggestion.
If you need to disable suggestions or tweak the string distance in your command, use:
```go
command.DisableSuggestions = true
```
or
```go
command.SuggestionsMinimumDistance = 1
```
You can also explicitly set names for which a given command will be suggested using the `SuggestFor` attribute. This allows suggestions for strings that are not close in terms of string distance, but makes sense in your set of commands and for some which you don't want aliases. Example:
```
$ kubectl remove
Error: unknown command "remove" for "kubectl"
Did you mean this?
delete
Run 'kubectl help' for usage.
```
## Generating documentation for your command
Cobra can generate documentation based on subcommands, flags, etc. in the following formats:
- [Markdown](doc/md_docs.md)
- [ReStructured Text](doc/rest_docs.md)
- [Man Page](doc/man_docs.md)
## Generating bash completions
Cobra can generate a bash-completion file. If you add more information to your command, these completions can be amazingly powerful and flexible. Read more about it in [Bash Completions](bash_completions.md).
# Contributing
1. Fork it
2. Download your fork to your PC (`git clone https://github.com/your_username/cobra && cd cobra`)
3. Create your feature branch (`git checkout -b my-new-feature`)
4. Make changes and add them (`git add .`)
5. Commit your changes (`git commit -m 'Add some feature'`)
6. Push to the branch (`git push origin my-new-feature`)
7. Create new pull request
# License
Cobra is released under the Apache 2.0 license. See [LICENSE.txt](https://github.com/spf13/cobra/blob/master/LICENSE.txt)

89
src/calanonsync/vendor/github.com/spf13/cobra/args.go generated vendored Normal file
View File

@ -0,0 +1,89 @@
package cobra
import (
"fmt"
)
type PositionalArgs func(cmd *Command, args []string) error
// Legacy arg validation has the following behaviour:
// - root commands with no subcommands can take arbitrary arguments
// - root commands with subcommands will do subcommand validity checking
// - subcommands will always accept arbitrary arguments
func legacyArgs(cmd *Command, args []string) error {
// no subcommand, always take args
if !cmd.HasSubCommands() {
return nil
}
// root command with subcommands, do subcommand checking.
if !cmd.HasParent() && len(args) > 0 {
return fmt.Errorf("unknown command %q for %q%s", args[0], cmd.CommandPath(), cmd.findSuggestions(args[0]))
}
return nil
}
// NoArgs returns an error if any args are included.
func NoArgs(cmd *Command, args []string) error {
if len(args) > 0 {
return fmt.Errorf("unknown command %q for %q", args[0], cmd.CommandPath())
}
return nil
}
// OnlyValidArgs returns an error if any args are not in the list of ValidArgs.
func OnlyValidArgs(cmd *Command, args []string) error {
if len(cmd.ValidArgs) > 0 {
for _, v := range args {
if !stringInSlice(v, cmd.ValidArgs) {
return fmt.Errorf("invalid argument %q for %q%s", v, cmd.CommandPath(), cmd.findSuggestions(args[0]))
}
}
}
return nil
}
// ArbitraryArgs never returns an error.
func ArbitraryArgs(cmd *Command, args []string) error {
return nil
}
// MinimumNArgs returns an error if there is not at least N args.
func MinimumNArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) < n {
return fmt.Errorf("requires at least %d arg(s), only received %d", n, len(args))
}
return nil
}
}
// MaximumNArgs returns an error if there are more than N args.
func MaximumNArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) > n {
return fmt.Errorf("accepts at most %d arg(s), received %d", n, len(args))
}
return nil
}
}
// ExactArgs returns an error if there are not exactly n args.
func ExactArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) != n {
return fmt.Errorf("accepts %d arg(s), received %d", n, len(args))
}
return nil
}
}
// RangeArgs returns an error if the number of args is not within the expected range.
func RangeArgs(min int, max int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) < min || len(args) > max {
return fmt.Errorf("accepts between %d and %d arg(s), received %d", min, max, len(args))
}
return nil
}
}

View File

@ -0,0 +1,555 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
"sort"
"strings"
"github.com/spf13/pflag"
)
// Annotations for Bash completion.
const (
BashCompFilenameExt = "cobra_annotation_bash_completion_filename_extensions"
BashCompCustom = "cobra_annotation_bash_completion_custom"
BashCompOneRequiredFlag = "cobra_annotation_bash_completion_one_required_flag"
BashCompSubdirsInDir = "cobra_annotation_bash_completion_subdirs_in_dir"
)
func writePreamble(buf *bytes.Buffer, name string) {
buf.WriteString(fmt.Sprintf("# bash completion for %-36s -*- shell-script -*-\n", name))
buf.WriteString(fmt.Sprintf(`
__%[1]s_debug()
{
if [[ -n ${BASH_COMP_DEBUG_FILE} ]]; then
echo "$*" >> "${BASH_COMP_DEBUG_FILE}"
fi
}
# Homebrew on Macs have version 1.3 of bash-completion which doesn't include
# _init_completion. This is a very minimal version of that function.
__%[1]s_init_completion()
{
COMPREPLY=()
_get_comp_words_by_ref "$@" cur prev words cword
}
__%[1]s_index_of_word()
{
local w word=$1
shift
index=0
for w in "$@"; do
[[ $w = "$word" ]] && return
index=$((index+1))
done
index=-1
}
__%[1]s_contains_word()
{
local w word=$1; shift
for w in "$@"; do
[[ $w = "$word" ]] && return
done
return 1
}
__%[1]s_handle_reply()
{
__%[1]s_debug "${FUNCNAME[0]}"
case $cur in
-*)
if [[ $(type -t compopt) = "builtin" ]]; then
compopt -o nospace
fi
local allflags
if [ ${#must_have_one_flag[@]} -ne 0 ]; then
allflags=("${must_have_one_flag[@]}")
else
allflags=("${flags[*]} ${two_word_flags[*]}")
fi
COMPREPLY=( $(compgen -W "${allflags[*]}" -- "$cur") )
if [[ $(type -t compopt) = "builtin" ]]; then
[[ "${COMPREPLY[0]}" == *= ]] || compopt +o nospace
fi
# complete after --flag=abc
if [[ $cur == *=* ]]; then
if [[ $(type -t compopt) = "builtin" ]]; then
compopt +o nospace
fi
local index flag
flag="${cur%%=*}"
__%[1]s_index_of_word "${flag}" "${flags_with_completion[@]}"
COMPREPLY=()
if [[ ${index} -ge 0 ]]; then
PREFIX=""
cur="${cur#*=}"
${flags_completion[${index}]}
if [ -n "${ZSH_VERSION}" ]; then
# zsh completion needs --flag= prefix
eval "COMPREPLY=( \"\${COMPREPLY[@]/#/${flag}=}\" )"
fi
fi
fi
return 0;
;;
esac
# check if we are handling a flag with special work handling
local index
__%[1]s_index_of_word "${prev}" "${flags_with_completion[@]}"
if [[ ${index} -ge 0 ]]; then
${flags_completion[${index}]}
return
fi
# we are parsing a flag and don't have a special handler, no completion
if [[ ${cur} != "${words[cword]}" ]]; then
return
fi
local completions
completions=("${commands[@]}")
if [[ ${#must_have_one_noun[@]} -ne 0 ]]; then
completions=("${must_have_one_noun[@]}")
fi
if [[ ${#must_have_one_flag[@]} -ne 0 ]]; then
completions+=("${must_have_one_flag[@]}")
fi
COMPREPLY=( $(compgen -W "${completions[*]}" -- "$cur") )
if [[ ${#COMPREPLY[@]} -eq 0 && ${#noun_aliases[@]} -gt 0 && ${#must_have_one_noun[@]} -ne 0 ]]; then
COMPREPLY=( $(compgen -W "${noun_aliases[*]}" -- "$cur") )
fi
if [[ ${#COMPREPLY[@]} -eq 0 ]]; then
declare -F __custom_func >/dev/null && __custom_func
fi
# available in bash-completion >= 2, not always present on macOS
if declare -F __ltrim_colon_completions >/dev/null; then
__ltrim_colon_completions "$cur"
fi
# If there is only 1 completion and it is a flag with an = it will be completed
# but we don't want a space after the =
if [[ "${#COMPREPLY[@]}" -eq "1" ]] && [[ $(type -t compopt) = "builtin" ]] && [[ "${COMPREPLY[0]}" == --*= ]]; then
compopt -o nospace
fi
}
# The arguments should be in the form "ext1|ext2|extn"
__%[1]s_handle_filename_extension_flag()
{
local ext="$1"
_filedir "@(${ext})"
}
__%[1]s_handle_subdirs_in_dir_flag()
{
local dir="$1"
pushd "${dir}" >/dev/null 2>&1 && _filedir -d && popd >/dev/null 2>&1
}
__%[1]s_handle_flag()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
# if a command required a flag, and we found it, unset must_have_one_flag()
local flagname=${words[c]}
local flagvalue
# if the word contained an =
if [[ ${words[c]} == *"="* ]]; then
flagvalue=${flagname#*=} # take in as flagvalue after the =
flagname=${flagname%%=*} # strip everything after the =
flagname="${flagname}=" # but put the = back
fi
__%[1]s_debug "${FUNCNAME[0]}: looking for ${flagname}"
if __%[1]s_contains_word "${flagname}" "${must_have_one_flag[@]}"; then
must_have_one_flag=()
fi
# if you set a flag which only applies to this command, don't show subcommands
if __%[1]s_contains_word "${flagname}" "${local_nonpersistent_flags[@]}"; then
commands=()
fi
# keep flag value with flagname as flaghash
# flaghash variable is an associative array which is only supported in bash > 3.
if [[ -z "${BASH_VERSION}" || "${BASH_VERSINFO[0]}" -gt 3 ]]; then
if [ -n "${flagvalue}" ] ; then
flaghash[${flagname}]=${flagvalue}
elif [ -n "${words[ $((c+1)) ]}" ] ; then
flaghash[${flagname}]=${words[ $((c+1)) ]}
else
flaghash[${flagname}]="true" # pad "true" for bool flag
fi
fi
# skip the argument to a two word flag
if __%[1]s_contains_word "${words[c]}" "${two_word_flags[@]}"; then
c=$((c+1))
# if we are looking for a flags value, don't show commands
if [[ $c -eq $cword ]]; then
commands=()
fi
fi
c=$((c+1))
}
__%[1]s_handle_noun()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
if __%[1]s_contains_word "${words[c]}" "${must_have_one_noun[@]}"; then
must_have_one_noun=()
elif __%[1]s_contains_word "${words[c]}" "${noun_aliases[@]}"; then
must_have_one_noun=()
fi
nouns+=("${words[c]}")
c=$((c+1))
}
__%[1]s_handle_command()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
local next_command
if [[ -n ${last_command} ]]; then
next_command="_${last_command}_${words[c]//:/__}"
else
if [[ $c -eq 0 ]]; then
next_command="_%[1]s_root_command"
else
next_command="_${words[c]//:/__}"
fi
fi
c=$((c+1))
__%[1]s_debug "${FUNCNAME[0]}: looking for ${next_command}"
declare -F "$next_command" >/dev/null && $next_command
}
__%[1]s_handle_word()
{
if [[ $c -ge $cword ]]; then
__%[1]s_handle_reply
return
fi
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
if [[ "${words[c]}" == -* ]]; then
__%[1]s_handle_flag
elif __%[1]s_contains_word "${words[c]}" "${commands[@]}"; then
__%[1]s_handle_command
elif [[ $c -eq 0 ]]; then
__%[1]s_handle_command
else
__%[1]s_handle_noun
fi
__%[1]s_handle_word
}
`, name))
}
func writePostscript(buf *bytes.Buffer, name string) {
name = strings.Replace(name, ":", "__", -1)
buf.WriteString(fmt.Sprintf("__start_%s()\n", name))
buf.WriteString(fmt.Sprintf(`{
local cur prev words cword
declare -A flaghash 2>/dev/null || :
if declare -F _init_completion >/dev/null 2>&1; then
_init_completion -s || return
else
__%[1]s_init_completion -n "=" || return
fi
local c=0
local flags=()
local two_word_flags=()
local local_nonpersistent_flags=()
local flags_with_completion=()
local flags_completion=()
local commands=("%[1]s")
local must_have_one_flag=()
local must_have_one_noun=()
local last_command
local nouns=()
__%[1]s_handle_word
}
`, name))
buf.WriteString(fmt.Sprintf(`if [[ $(type -t compopt) = "builtin" ]]; then
complete -o default -F __start_%s %s
else
complete -o default -o nospace -F __start_%s %s
fi
`, name, name, name, name))
buf.WriteString("# ex: ts=4 sw=4 et filetype=sh\n")
}
func writeCommands(buf *bytes.Buffer, cmd *Command) {
buf.WriteString(" commands=()\n")
for _, c := range cmd.Commands() {
if !c.IsAvailableCommand() || c == cmd.helpCommand {
continue
}
buf.WriteString(fmt.Sprintf(" commands+=(%q)\n", c.Name()))
}
buf.WriteString("\n")
}
func writeFlagHandler(buf *bytes.Buffer, name string, annotations map[string][]string, cmd *Command) {
for key, value := range annotations {
switch key {
case BashCompFilenameExt:
buf.WriteString(fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
var ext string
if len(value) > 0 {
ext = fmt.Sprintf("__%s_handle_filename_extension_flag ", cmd.Root().Name()) + strings.Join(value, "|")
} else {
ext = "_filedir"
}
buf.WriteString(fmt.Sprintf(" flags_completion+=(%q)\n", ext))
case BashCompCustom:
buf.WriteString(fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
if len(value) > 0 {
handlers := strings.Join(value, "; ")
buf.WriteString(fmt.Sprintf(" flags_completion+=(%q)\n", handlers))
} else {
buf.WriteString(" flags_completion+=(:)\n")
}
case BashCompSubdirsInDir:
buf.WriteString(fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
var ext string
if len(value) == 1 {
ext = fmt.Sprintf("__%s_handle_subdirs_in_dir_flag ", cmd.Root().Name()) + value[0]
} else {
ext = "_filedir -d"
}
buf.WriteString(fmt.Sprintf(" flags_completion+=(%q)\n", ext))
}
}
}
func writeShortFlag(buf *bytes.Buffer, flag *pflag.Flag, cmd *Command) {
name := flag.Shorthand
format := " "
if len(flag.NoOptDefVal) == 0 {
format += "two_word_"
}
format += "flags+=(\"-%s\")\n"
buf.WriteString(fmt.Sprintf(format, name))
writeFlagHandler(buf, "-"+name, flag.Annotations, cmd)
}
func writeFlag(buf *bytes.Buffer, flag *pflag.Flag, cmd *Command) {
name := flag.Name
format := " flags+=(\"--%s"
if len(flag.NoOptDefVal) == 0 {
format += "="
}
format += "\")\n"
buf.WriteString(fmt.Sprintf(format, name))
writeFlagHandler(buf, "--"+name, flag.Annotations, cmd)
}
func writeLocalNonPersistentFlag(buf *bytes.Buffer, flag *pflag.Flag) {
name := flag.Name
format := " local_nonpersistent_flags+=(\"--%s"
if len(flag.NoOptDefVal) == 0 {
format += "="
}
format += "\")\n"
buf.WriteString(fmt.Sprintf(format, name))
}
func writeFlags(buf *bytes.Buffer, cmd *Command) {
buf.WriteString(` flags=()
two_word_flags=()
local_nonpersistent_flags=()
flags_with_completion=()
flags_completion=()
`)
localNonPersistentFlags := cmd.LocalNonPersistentFlags()
cmd.NonInheritedFlags().VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
writeFlag(buf, flag, cmd)
if len(flag.Shorthand) > 0 {
writeShortFlag(buf, flag, cmd)
}
if localNonPersistentFlags.Lookup(flag.Name) != nil {
writeLocalNonPersistentFlag(buf, flag)
}
})
cmd.InheritedFlags().VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
writeFlag(buf, flag, cmd)
if len(flag.Shorthand) > 0 {
writeShortFlag(buf, flag, cmd)
}
})
buf.WriteString("\n")
}
func writeRequiredFlag(buf *bytes.Buffer, cmd *Command) {
buf.WriteString(" must_have_one_flag=()\n")
flags := cmd.NonInheritedFlags()
flags.VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
for key := range flag.Annotations {
switch key {
case BashCompOneRequiredFlag:
format := " must_have_one_flag+=(\"--%s"
if flag.Value.Type() != "bool" {
format += "="
}
format += "\")\n"
buf.WriteString(fmt.Sprintf(format, flag.Name))
if len(flag.Shorthand) > 0 {
buf.WriteString(fmt.Sprintf(" must_have_one_flag+=(\"-%s\")\n", flag.Shorthand))
}
}
}
})
}
func writeRequiredNouns(buf *bytes.Buffer, cmd *Command) {
buf.WriteString(" must_have_one_noun=()\n")
sort.Sort(sort.StringSlice(cmd.ValidArgs))
for _, value := range cmd.ValidArgs {
buf.WriteString(fmt.Sprintf(" must_have_one_noun+=(%q)\n", value))
}
}
func writeArgAliases(buf *bytes.Buffer, cmd *Command) {
buf.WriteString(" noun_aliases=()\n")
sort.Sort(sort.StringSlice(cmd.ArgAliases))
for _, value := range cmd.ArgAliases {
buf.WriteString(fmt.Sprintf(" noun_aliases+=(%q)\n", value))
}
}
func gen(buf *bytes.Buffer, cmd *Command) {
for _, c := range cmd.Commands() {
if !c.IsAvailableCommand() || c == cmd.helpCommand {
continue
}
gen(buf, c)
}
commandName := cmd.CommandPath()
commandName = strings.Replace(commandName, " ", "_", -1)
commandName = strings.Replace(commandName, ":", "__", -1)
if cmd.Root() == cmd {
buf.WriteString(fmt.Sprintf("_%s_root_command()\n{\n", commandName))
} else {
buf.WriteString(fmt.Sprintf("_%s()\n{\n", commandName))
}
buf.WriteString(fmt.Sprintf(" last_command=%q\n", commandName))
writeCommands(buf, cmd)
writeFlags(buf, cmd)
writeRequiredFlag(buf, cmd)
writeRequiredNouns(buf, cmd)
writeArgAliases(buf, cmd)
buf.WriteString("}\n\n")
}
// GenBashCompletion generates bash completion file and writes to the passed writer.
func (c *Command) GenBashCompletion(w io.Writer) error {
buf := new(bytes.Buffer)
writePreamble(buf, c.Name())
if len(c.BashCompletionFunction) > 0 {
buf.WriteString(c.BashCompletionFunction + "\n")
}
gen(buf, c)
writePostscript(buf, c.Name())
_, err := buf.WriteTo(w)
return err
}
func nonCompletableFlag(flag *pflag.Flag) bool {
return flag.Hidden || len(flag.Deprecated) > 0
}
// GenBashCompletionFile generates bash completion file.
func (c *Command) GenBashCompletionFile(filename string) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.GenBashCompletion(outFile)
}
// MarkFlagRequired adds the BashCompOneRequiredFlag annotation to the named flag if it exists,
// and causes your command to report an error if invoked without the flag.
func (c *Command) MarkFlagRequired(name string) error {
return MarkFlagRequired(c.Flags(), name)
}
// MarkPersistentFlagRequired adds the BashCompOneRequiredFlag annotation to the named persistent flag if it exists,
// and causes your command to report an error if invoked without the flag.
func (c *Command) MarkPersistentFlagRequired(name string) error {
return MarkFlagRequired(c.PersistentFlags(), name)
}
// MarkFlagRequired adds the BashCompOneRequiredFlag annotation to the named flag if it exists,
// and causes your command to report an error if invoked without the flag.
func MarkFlagRequired(flags *pflag.FlagSet, name string) error {
return flags.SetAnnotation(name, BashCompOneRequiredFlag, []string{"true"})
}
// MarkFlagFilename adds the BashCompFilenameExt annotation to the named flag, if it exists.
// Generated bash autocompletion will select filenames for the flag, limiting to named extensions if provided.
func (c *Command) MarkFlagFilename(name string, extensions ...string) error {
return MarkFlagFilename(c.Flags(), name, extensions...)
}
// MarkFlagCustom adds the BashCompCustom annotation to the named flag, if it exists.
// Generated bash autocompletion will call the bash function f for the flag.
func (c *Command) MarkFlagCustom(name string, f string) error {
return MarkFlagCustom(c.Flags(), name, f)
}
// MarkPersistentFlagFilename adds the BashCompFilenameExt annotation to the named persistent flag, if it exists.
// Generated bash autocompletion will select filenames for the flag, limiting to named extensions if provided.
func (c *Command) MarkPersistentFlagFilename(name string, extensions ...string) error {
return MarkFlagFilename(c.PersistentFlags(), name, extensions...)
}
// MarkFlagFilename adds the BashCompFilenameExt annotation to the named flag in the flag set, if it exists.
// Generated bash autocompletion will select filenames for the flag, limiting to named extensions if provided.
func MarkFlagFilename(flags *pflag.FlagSet, name string, extensions ...string) error {
return flags.SetAnnotation(name, BashCompFilenameExt, extensions)
}
// MarkFlagCustom adds the BashCompCustom annotation to the named flag in the flag set, if it exists.
// Generated bash autocompletion will call the bash function f for the flag.
func MarkFlagCustom(flags *pflag.FlagSet, name string, f string) error {
return flags.SetAnnotation(name, BashCompCustom, []string{f})
}

View File

@ -0,0 +1,221 @@
# Generating Bash Completions For Your Own cobra.Command
Generating bash completions from a cobra command is incredibly easy. An actual program which does so for the kubernetes kubectl binary is as follows:
```go
package main
import (
"io/ioutil"
"os"
"k8s.io/kubernetes/pkg/kubectl/cmd"
"k8s.io/kubernetes/pkg/kubectl/cmd/util"
)
func main() {
kubectl := cmd.NewKubectlCommand(util.NewFactory(nil), os.Stdin, ioutil.Discard, ioutil.Discard)
kubectl.GenBashCompletionFile("out.sh")
}
```
`out.sh` will get you completions of subcommands and flags. Copy it to `/etc/bash_completion.d/` as described [here](https://debian-administration.org/article/316/An_introduction_to_bash_completion_part_1) and reset your terminal to use autocompletion. If you make additional annotations to your code, you can get even more intelligent and flexible behavior.
## Creating your own custom functions
Some more actual code that works in kubernetes:
```bash
const (
bash_completion_func = `__kubectl_parse_get()
{
local kubectl_output out
if kubectl_output=$(kubectl get --no-headers "$1" 2>/dev/null); then
out=($(echo "${kubectl_output}" | awk '{print $1}'))
COMPREPLY=( $( compgen -W "${out[*]}" -- "$cur" ) )
fi
}
__kubectl_get_resource()
{
if [[ ${#nouns[@]} -eq 0 ]]; then
return 1
fi
__kubectl_parse_get ${nouns[${#nouns[@]} -1]}
if [[ $? -eq 0 ]]; then
return 0
fi
}
__custom_func() {
case ${last_command} in
kubectl_get | kubectl_describe | kubectl_delete | kubectl_stop)
__kubectl_get_resource
return
;;
*)
;;
esac
}
`)
```
And then I set that in my command definition:
```go
cmds := &cobra.Command{
Use: "kubectl",
Short: "kubectl controls the Kubernetes cluster manager",
Long: `kubectl controls the Kubernetes cluster manager.
Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
Run: runHelp,
BashCompletionFunction: bash_completion_func,
}
```
The `BashCompletionFunction` option is really only valid/useful on the root command. Doing the above will cause `__custom_func()` to be called when the built in processor was unable to find a solution. In the case of kubernetes a valid command might look something like `kubectl get pod [mypod]`. If you type `kubectl get pod [tab][tab]` the `__customc_func()` will run because the cobra.Command only understood "kubectl" and "get." `__custom_func()` will see that the cobra.Command is "kubectl_get" and will thus call another helper `__kubectl_get_resource()`. `__kubectl_get_resource` will look at the 'nouns' collected. In our example the only noun will be `pod`. So it will call `__kubectl_parse_get pod`. `__kubectl_parse_get` will actually call out to kubernetes and get any pods. It will then set `COMPREPLY` to valid pods!
## Have the completions code complete your 'nouns'
In the above example "pod" was assumed to already be typed. But if you want `kubectl get [tab][tab]` to show a list of valid "nouns" you have to set them. Simplified code from `kubectl get` looks like:
```go
validArgs []string = { "pod", "node", "service", "replicationcontroller" }
cmd := &cobra.Command{
Use: "get [(-o|--output=)json|yaml|template|...] (RESOURCE [NAME] | RESOURCE/NAME ...)",
Short: "Display one or many resources",
Long: get_long,
Example: get_example,
Run: func(cmd *cobra.Command, args []string) {
err := RunGet(f, out, cmd, args)
util.CheckErr(err)
},
ValidArgs: validArgs,
}
```
Notice we put the "ValidArgs" on the "get" subcommand. Doing so will give results like
```bash
# kubectl get [tab][tab]
node pod replicationcontroller service
```
## Plural form and shortcuts for nouns
If your nouns have a number of aliases, you can define them alongside `ValidArgs` using `ArgAliases`:
```go
argAliases []string = { "pods", "nodes", "services", "svc", "replicationcontrollers", "rc" }
cmd := &cobra.Command{
...
ValidArgs: validArgs,
ArgAliases: argAliases
}
```
The aliases are not shown to the user on tab completion, but they are accepted as valid nouns by
the completion algorithm if entered manually, e.g. in:
```bash
# kubectl get rc [tab][tab]
backend frontend database
```
Note that without declaring `rc` as an alias, the completion algorithm would show the list of nouns
in this example again instead of the replication controllers.
## Mark flags as required
Most of the time completions will only show subcommands. But if a flag is required to make a subcommand work, you probably want it to show up when the user types [tab][tab]. Marking a flag as 'Required' is incredibly easy.
```go
cmd.MarkFlagRequired("pod")
cmd.MarkFlagRequired("container")
```
and you'll get something like
```bash
# kubectl exec [tab][tab][tab]
-c --container= -p --pod=
```
# Specify valid filename extensions for flags that take a filename
In this example we use --filename= and expect to get a json or yaml file as the argument. To make this easier we annotate the --filename flag with valid filename extensions.
```go
annotations := []string{"json", "yaml", "yml"}
annotation := make(map[string][]string)
annotation[cobra.BashCompFilenameExt] = annotations
flag := &pflag.Flag{
Name: "filename",
Shorthand: "f",
Usage: usage,
Value: value,
DefValue: value.String(),
Annotations: annotation,
}
cmd.Flags().AddFlag(flag)
```
Now when you run a command with this filename flag you'll get something like
```bash
# kubectl create -f
test/ example/ rpmbuild/
hello.yml test.json
```
So while there are many other files in the CWD it only shows me subdirs and those with valid extensions.
# Specify custom flag completion
Similar to the filename completion and filtering using cobra.BashCompFilenameExt, you can specify
a custom flag completion function with cobra.BashCompCustom:
```go
annotation := make(map[string][]string)
annotation[cobra.BashCompFilenameExt] = []string{"__kubectl_get_namespaces"}
flag := &pflag.Flag{
Name: "namespace",
Usage: usage,
Annotations: annotation,
}
cmd.Flags().AddFlag(flag)
```
In addition add the `__handle_namespace_flag` implementation in the `BashCompletionFunction`
value, e.g.:
```bash
__kubectl_get_namespaces()
{
local template
template="{{ range .items }}{{ .metadata.name }} {{ end }}"
local kubectl_out
if kubectl_out=$(kubectl get -o template --template="${template}" namespace 2>/dev/null); then
COMPREPLY=( $( compgen -W "${kubectl_out}[*]" -- "$cur" ) )
fi
}
```
# Using bash aliases for commands
You can also configure the `bash aliases` for the commands and they will also support completions.
```bash
alias aliasname=origcommand
complete -o default -F __start_origcommand aliasname
# and now when you run `aliasname` completion will make
# suggestions as it did for `origcommand`.
$) aliasname <tab><tab>
completion firstcommand secondcommand
```

200
src/calanonsync/vendor/github.com/spf13/cobra/cobra.go generated vendored Normal file
View File

@ -0,0 +1,200 @@
// Copyright © 2013 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Commands similar to git, go tools and other modern CLI tools
// inspired by go, go-Commander, gh and subcommand
package cobra
import (
"fmt"
"io"
"reflect"
"strconv"
"strings"
"text/template"
"unicode"
)
var templateFuncs = template.FuncMap{
"trim": strings.TrimSpace,
"trimRightSpace": trimRightSpace,
"trimTrailingWhitespaces": trimRightSpace,
"appendIfNotPresent": appendIfNotPresent,
"rpad": rpad,
"gt": Gt,
"eq": Eq,
}
var initializers []func()
// EnablePrefixMatching allows to set automatic prefix matching. Automatic prefix matching can be a dangerous thing
// to automatically enable in CLI tools.
// Set this to true to enable it.
var EnablePrefixMatching = false
// EnableCommandSorting controls sorting of the slice of commands, which is turned on by default.
// To disable sorting, set it to false.
var EnableCommandSorting = true
// MousetrapHelpText enables an information splash screen on Windows
// if the CLI is started from explorer.exe.
// To disable the mousetrap, just set this variable to blank string ("").
// Works only on Microsoft Windows.
var MousetrapHelpText string = `This is a command line tool.
You need to open cmd.exe and run it from there.
`
// AddTemplateFunc adds a template function that's available to Usage and Help
// template generation.
func AddTemplateFunc(name string, tmplFunc interface{}) {
templateFuncs[name] = tmplFunc
}
// AddTemplateFuncs adds multiple template functions that are available to Usage and
// Help template generation.
func AddTemplateFuncs(tmplFuncs template.FuncMap) {
for k, v := range tmplFuncs {
templateFuncs[k] = v
}
}
// OnInitialize sets the passed functions to be run when each command's
// Execute method is called.
func OnInitialize(y ...func()) {
initializers = append(initializers, y...)
}
// FIXME Gt is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// Gt takes two types and checks whether the first type is greater than the second. In case of types Arrays, Chans,
// Maps and Slices, Gt will compare their lengths. Ints are compared directly while strings are first parsed as
// ints and then compared.
func Gt(a interface{}, b interface{}) bool {
var left, right int64
av := reflect.ValueOf(a)
switch av.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
left = int64(av.Len())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
left = av.Int()
case reflect.String:
left, _ = strconv.ParseInt(av.String(), 10, 64)
}
bv := reflect.ValueOf(b)
switch bv.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
right = int64(bv.Len())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
right = bv.Int()
case reflect.String:
right, _ = strconv.ParseInt(bv.String(), 10, 64)
}
return left > right
}
// FIXME Eq is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// Eq takes two types and checks whether they are equal. Supported types are int and string. Unsupported types will panic.
func Eq(a interface{}, b interface{}) bool {
av := reflect.ValueOf(a)
bv := reflect.ValueOf(b)
switch av.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
panic("Eq called on unsupported type")
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return av.Int() == bv.Int()
case reflect.String:
return av.String() == bv.String()
}
return false
}
func trimRightSpace(s string) string {
return strings.TrimRightFunc(s, unicode.IsSpace)
}
// FIXME appendIfNotPresent is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// appendIfNotPresent will append stringToAppend to the end of s, but only if it's not yet present in s.
func appendIfNotPresent(s, stringToAppend string) string {
if strings.Contains(s, stringToAppend) {
return s
}
return s + " " + stringToAppend
}
// rpad adds padding to the right of a string.
func rpad(s string, padding int) string {
template := fmt.Sprintf("%%-%ds", padding)
return fmt.Sprintf(template, s)
}
// tmpl executes the given template text on data, writing the result to w.
func tmpl(w io.Writer, text string, data interface{}) error {
t := template.New("top")
t.Funcs(templateFuncs)
template.Must(t.Parse(text))
return t.Execute(w, data)
}
// ld compares two strings and returns the levenshtein distance between them.
func ld(s, t string, ignoreCase bool) int {
if ignoreCase {
s = strings.ToLower(s)
t = strings.ToLower(t)
}
d := make([][]int, len(s)+1)
for i := range d {
d[i] = make([]int, len(t)+1)
}
for i := range d {
d[i][0] = i
}
for j := range d[0] {
d[0][j] = j
}
for j := 1; j <= len(t); j++ {
for i := 1; i <= len(s); i++ {
if s[i-1] == t[j-1] {
d[i][j] = d[i-1][j-1]
} else {
min := d[i-1][j]
if d[i][j-1] < min {
min = d[i][j-1]
}
if d[i-1][j-1] < min {
min = d[i-1][j-1]
}
d[i][j] = min + 1
}
}
}
return d[len(s)][len(t)]
}
func stringInSlice(a string, list []string) bool {
for _, b := range list {
if b == a {
return true
}
}
return false
}

View File

@ -0,0 +1,683 @@
package cmd
func initAgpl() {
Licenses["agpl"] = License{
Name: "GNU Affero General Public License",
PossibleMatches: []string{"agpl", "affero gpl", "gnu agpl"},
Header: `
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.`,
Text: ` GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.
`,
}
}

View File

@ -0,0 +1,238 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initApache2() {
Licenses["apache"] = License{
Name: "Apache 2.0",
PossibleMatches: []string{"apache", "apache20", "apache 2.0", "apache2.0", "apache-2.0"},
Header: `
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.`,
Text: `
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
`,
}
}

View File

@ -0,0 +1,71 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initBsdClause2() {
Licenses["freebsd"] = License{
Name: "Simplified BSD License",
PossibleMatches: []string{"freebsd", "simpbsd", "simple bsd", "2-clause bsd",
"2 clause bsd", "simplified bsd license"},
Header: `All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.`,
Text: `{{ .copyright }}
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
`,
}
}

View File

@ -0,0 +1,78 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initBsdClause3() {
Licenses["bsd"] = License{
Name: "NewBSD",
PossibleMatches: []string{"bsd", "newbsd", "3 clause bsd", "3-clause bsd"},
Header: `All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.`,
Text: `{{ .copyright }}
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
`,
}
}

View File

@ -0,0 +1,376 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initGpl2() {
Licenses["gpl2"] = License{
Name: "GNU General Public License 2.0",
PossibleMatches: []string{"gpl2", "gnu gpl2", "gplv2"},
Header: `
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.`,
Text: ` GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type 'show c' for details.
The hypothetical commands 'show w' and 'show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than 'show w' and 'show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
'Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.
`,
}
}

View File

@ -0,0 +1,711 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initGpl3() {
Licenses["gpl3"] = License{
Name: "GNU General Public License 3.0",
PossibleMatches: []string{"gpl3", "gplv3", "gpl", "gnu gpl3", "gnu gpl"},
Header: `
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.`,
Text: ` GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type 'show c' for details.
The hypothetical commands 'show w' and 'show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
`,
}
}

View File

@ -0,0 +1,186 @@
package cmd
func initLgpl() {
Licenses["lgpl"] = License{
Name: "GNU Lesser General Public License",
PossibleMatches: []string{"lgpl", "lesser gpl", "gnu lgpl"},
Header: `
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.`,
Text: ` GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.`,
}
}

View File

@ -0,0 +1,63 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
func initMit() {
Licenses["mit"] = License{
Name: "MIT License",
PossibleMatches: []string{"mit"},
Header: `
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.`,
Text: `The MIT License (MIT)
{{ .copyright }}
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
`,
}
}

View File

@ -0,0 +1,118 @@
// Copyright © 2015 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Parts inspired by https://github.com/ryanuber/go-license
package cmd
import (
"strings"
"time"
"github.com/spf13/viper"
)
// Licenses contains all possible licenses a user can choose from.
var Licenses = make(map[string]License)
// License represents a software license agreement, containing the Name of
// the license, its possible matches (on the command line as given to cobra),
// the header to be used with each file on the file's creating, and the text
// of the license
type License struct {
Name string // The type of license in use
PossibleMatches []string // Similar names to guess
Text string // License text data
Header string // License header for source files
}
func init() {
// Allows a user to not use a license.
Licenses["none"] = License{"None", []string{"none", "false"}, "", ""}
initApache2()
initMit()
initBsdClause3()
initBsdClause2()
initGpl2()
initGpl3()
initLgpl()
initAgpl()
}
// getLicense returns license specified by user in flag or in config.
// If user didn't specify the license, it returns Apache License 2.0.
//
// TODO: Inspect project for existing license
func getLicense() License {
// If explicitly flagged, use that.
if userLicense != "" {
return findLicense(userLicense)
}
// If user wants to have custom license, use that.
if viper.IsSet("license.header") || viper.IsSet("license.text") {
return License{Header: viper.GetString("license.header"),
Text: viper.GetString("license.text")}
}
// If user wants to have built-in license, use that.
if viper.IsSet("license") {
return findLicense(viper.GetString("license"))
}
// If user didn't set any license, use Apache 2.0 by default.
return Licenses["apache"]
}
func copyrightLine() string {
author := viper.GetString("author")
year := viper.GetString("year") // For tests.
if year == "" {
year = time.Now().Format("2006")
}
return "Copyright © " + year + " " + author
}
// findLicense looks for License object of built-in licenses.
// If it didn't find license, then the app will be terminated and
// error will be printed.
func findLicense(name string) License {
found := matchLicense(name)
if found == "" {
er("unknown license: " + name)
}
return Licenses[found]
}
// matchLicense compares the given a license name
// to PossibleMatches of all built-in licenses.
// It returns blank string, if name is blank string or it didn't find
// then appropriate match to name.
func matchLicense(name string) string {
if name == "" {
return ""
}
for key, lic := range Licenses {
for _, match := range lic.PossibleMatches {
if strings.EqualFold(name, match) {
return key
}
}
}
return ""
}

View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1507
src/calanonsync/vendor/github.com/spf13/cobra/command.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
// +build !windows
package cobra
var preExecHookFn func(*Command)

View File

@ -0,0 +1,20 @@
// +build windows
package cobra
import (
"os"
"time"
"github.com/inconshreveable/mousetrap"
)
var preExecHookFn = preExecHook
func preExecHook(c *Command) {
if MousetrapHelpText != "" && mousetrap.StartedByExplorer() {
c.Print(MousetrapHelpText)
time.Sleep(5 * time.Second)
os.Exit(1)
}
}

View File

@ -0,0 +1,126 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
"strings"
)
// GenZshCompletionFile generates zsh completion file.
func (c *Command) GenZshCompletionFile(filename string) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.GenZshCompletion(outFile)
}
// GenZshCompletion generates a zsh completion file and writes to the passed writer.
func (c *Command) GenZshCompletion(w io.Writer) error {
buf := new(bytes.Buffer)
writeHeader(buf, c)
maxDepth := maxDepth(c)
writeLevelMapping(buf, maxDepth)
writeLevelCases(buf, maxDepth, c)
_, err := buf.WriteTo(w)
return err
}
func writeHeader(w io.Writer, cmd *Command) {
fmt.Fprintf(w, "#compdef %s\n\n", cmd.Name())
}
func maxDepth(c *Command) int {
if len(c.Commands()) == 0 {
return 0
}
maxDepthSub := 0
for _, s := range c.Commands() {
subDepth := maxDepth(s)
if subDepth > maxDepthSub {
maxDepthSub = subDepth
}
}
return 1 + maxDepthSub
}
func writeLevelMapping(w io.Writer, numLevels int) {
fmt.Fprintln(w, `_arguments \`)
for i := 1; i <= numLevels; i++ {
fmt.Fprintf(w, ` '%d: :->level%d' \`, i, i)
fmt.Fprintln(w)
}
fmt.Fprintf(w, ` '%d: :%s'`, numLevels+1, "_files")
fmt.Fprintln(w)
}
func writeLevelCases(w io.Writer, maxDepth int, root *Command) {
fmt.Fprintln(w, "case $state in")
defer fmt.Fprintln(w, "esac")
for i := 1; i <= maxDepth; i++ {
fmt.Fprintf(w, " level%d)\n", i)
writeLevel(w, root, i)
fmt.Fprintln(w, " ;;")
}
fmt.Fprintln(w, " *)")
fmt.Fprintln(w, " _arguments '*: :_files'")
fmt.Fprintln(w, " ;;")
}
func writeLevel(w io.Writer, root *Command, i int) {
fmt.Fprintf(w, " case $words[%d] in\n", i)
defer fmt.Fprintln(w, " esac")
commands := filterByLevel(root, i)
byParent := groupByParent(commands)
for p, c := range byParent {
names := names(c)
fmt.Fprintf(w, " %s)\n", p)
fmt.Fprintf(w, " _arguments '%d: :(%s)'\n", i, strings.Join(names, " "))
fmt.Fprintln(w, " ;;")
}
fmt.Fprintln(w, " *)")
fmt.Fprintln(w, " _arguments '*: :_files'")
fmt.Fprintln(w, " ;;")
}
func filterByLevel(c *Command, l int) []*Command {
cs := make([]*Command, 0)
if l == 0 {
cs = append(cs, c)
return cs
}
for _, s := range c.Commands() {
cs = append(cs, filterByLevel(s, l-1)...)
}
return cs
}
func groupByParent(commands []*Command) map[string][]*Command {
m := make(map[string][]*Command)
for _, c := range commands {
parent := c.Parent()
if parent == nil {
continue
}
m[parent.Name()] = append(m[parent.Name()], c)
}
return m
}
func names(commands []*Command) []string {
ns := make([]string, len(commands))
for i, c := range commands {
ns[i] = c.Name()
}
return ns
}

View File

@ -0,0 +1,2 @@
.idea/*

View File

@ -0,0 +1,21 @@
sudo: false
language: go
go:
- 1.7.3
- 1.8.1
- tip
matrix:
allow_failures:
- go: tip
install:
- go get github.com/golang/lint/golint
- export PATH=$GOPATH/bin:$PATH
- go install ./...
script:
- verify/all.sh -v
- go test ./...

28
src/calanonsync/vendor/github.com/spf13/pflag/LICENSE generated vendored Normal file
View File

@ -0,0 +1,28 @@
Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

296
src/calanonsync/vendor/github.com/spf13/pflag/README.md generated vendored Normal file
View File

@ -0,0 +1,296 @@
[![Build Status](https://travis-ci.org/spf13/pflag.svg?branch=master)](https://travis-ci.org/spf13/pflag)
[![Go Report Card](https://goreportcard.com/badge/github.com/spf13/pflag)](https://goreportcard.com/report/github.com/spf13/pflag)
[![GoDoc](https://godoc.org/github.com/spf13/pflag?status.svg)](https://godoc.org/github.com/spf13/pflag)
## Description
pflag is a drop-in replacement for Go's flag package, implementing
POSIX/GNU-style --flags.
pflag is compatible with the [GNU extensions to the POSIX recommendations
for command-line options][1]. For a more precise description, see the
"Command-line flag syntax" section below.
[1]: http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html
pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.
## Installation
pflag is available using the standard `go get` command.
Install by running:
go get github.com/spf13/pflag
Run tests by running:
go test github.com/spf13/pflag
## Usage
pflag is a drop-in replacement of Go's native flag package. If you import
pflag under the name "flag" then all code should continue to function
with no changes.
``` go
import flag "github.com/spf13/pflag"
```
There is one exception to this: if you directly instantiate the Flag struct
there is one more field "Shorthand" that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.
Define flags using flag.String(), Bool(), Int(), etc.
This declares an integer flag, -flagname, stored in the pointer ip, with type *int.
``` go
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
```
If you like, you can bind the flag to a variable using the Var() functions.
``` go
var flagvar int
func init() {
flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}
```
Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by
``` go
flag.Var(&flagVal, "name", "help message for flagname")
```
For such flags, the default value is just the initial value of the variable.
After all flags are defined, call
``` go
flag.Parse()
```
to parse the command line into the defined flags.
Flags may then be used directly. If you're using the flags themselves,
they are all pointers; if you bind to variables, they're values.
``` go
fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)
```
There are helpers function to get values later if you have the FlagSet but
it was difficult to keep up with all of the flag pointers in your code.
If you have a pflag.FlagSet with a flag called 'flagname' of type int you
can use GetInt() to get the int value. But notice that 'flagname' must exist
and it must be an int. GetString("flagname") will fail.
``` go
i, err := flagset.GetInt("flagname")
```
After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.
The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
'P' to the name of any function that defines a flag.
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
flag.BoolVarP(&flagvar, "boolname", "b", true, "help message")
}
flag.VarP(&flagVal, "varname", "v", "help message")
```
Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.
The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.
## Setting no option default values for flags
After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"
```
Would result in something like
| Parsed Arguments | Resulting Value |
| ------------- | ------------- |
| --flagname=1357 | ip=1357 |
| --flagname | ip=4321 |
| [nothing] | ip=1234 |
## Command line flag syntax
```
--flag // boolean flags, or flags with no option default values
--flag x // only on flags without a default value
--flag=x
```
Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value
```
// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID
// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234
// mixed
-abcs "hello"
-absd="hello"
-abcs1234
```
Flag parsing stops after the terminator "--". Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.
Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.
## Mutating or "Normalizing" Flag names
It is possible to set a custom flag name 'normalization function.' It allows flag names to be mutated both when created in the code and when used on the command line to some 'normalized' form. The 'normalized' form is used for comparison. Two examples of using the custom normalization func follow.
**Example #1**: You want -, _, and . in flags to compare the same. aka --my-flag == --my_flag == --my.flag
``` go
func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
from := []string{"-", "_"}
to := "."
for _, sep := range from {
name = strings.Replace(name, sep, to, -1)
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)
```
**Example #2**: You want to alias two flags. aka --old-flag-name == --new-flag-name
``` go
func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
switch name {
case "old-flag-name":
name = "new-flag-name"
break
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)
```
## Deprecating a flag or its shorthand
It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.
**Example #1**: You want to deprecate a flag named "badflag" as well as inform the users what flag they should use instead.
```go
// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")
```
This hides "badflag" from help text, and prints `Flag --badflag has been deprecated, please use --good-flag instead` when "badflag" is used.
**Example #2**: You want to keep a flag name "noshorthandflag" but deprecate its shortname "n".
```go
// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")
```
This hides the shortname "n" from help text, and prints `Flag shorthand -n has been deprecated, please use --noshorthandflag only` when the shorthand "n" is used.
Note that usage message is essential here, and it should not be empty.
## Hidden flags
It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.
**Example**: You have a flag named "secretFlag" that you need for internal use only and don't want it showing up in help text, or for its usage text to be available.
```go
// hide a flag by specifying its name
flags.MarkHidden("secretFlag")
```
## Disable sorting of flags
`pflag` allows you to disable sorting of flags for help and usage message.
**Example**:
```go
flags.BoolP("verbose", "v", false, "verbose output")
flags.String("coolflag", "yeaah", "it's really cool flag")
flags.Int("usefulflag", 777, "sometimes it's very useful")
flags.SortFlags = false
flags.PrintDefaults()
```
**Output**:
```
-v, --verbose verbose output
--coolflag string it's really cool flag (default "yeaah")
--usefulflag int sometimes it's very useful (default 777)
```
## Supporting Go flags when using pflag
In order to support flags defined using Go's `flag` package, they must be added to the `pflag` flagset. This is usually necessary
to support flags defined by third-party dependencies (e.g. `golang/glog`).
**Example**: You want to add the Go flags to the `CommandLine` flagset
```go
import (
goflag "flag"
flag "github.com/spf13/pflag"
)
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
func main() {
flag.CommandLine.AddGoFlagSet(goflag.CommandLine)
flag.Parse()
}
```
## More info
You can see the full reference documentation of the pflag package
[at godoc.org][3], or through go's standard documentation system by
running `godoc -http=:6060` and browsing to
[http://localhost:6060/pkg/github.com/spf13/pflag][2] after
installation.
[2]: http://localhost:6060/pkg/github.com/spf13/pflag
[3]: http://godoc.org/github.com/spf13/pflag

94
src/calanonsync/vendor/github.com/spf13/pflag/bool.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
package pflag
import "strconv"
// optional interface to indicate boolean flags that can be
// supplied without "=value" text
type boolFlag interface {
Value
IsBoolFlag() bool
}
// -- bool Value
type boolValue bool
func newBoolValue(val bool, p *bool) *boolValue {
*p = val
return (*boolValue)(p)
}
func (b *boolValue) Set(s string) error {
v, err := strconv.ParseBool(s)
*b = boolValue(v)
return err
}
func (b *boolValue) Type() string {
return "bool"
}
func (b *boolValue) String() string { return strconv.FormatBool(bool(*b)) }
func (b *boolValue) IsBoolFlag() bool { return true }
func boolConv(sval string) (interface{}, error) {
return strconv.ParseBool(sval)
}
// GetBool return the bool value of a flag with the given name
func (f *FlagSet) GetBool(name string) (bool, error) {
val, err := f.getFlagType(name, "bool", boolConv)
if err != nil {
return false, err
}
return val.(bool), nil
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func (f *FlagSet) BoolVar(p *bool, name string, value bool, usage string) {
f.BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := f.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func BoolVar(p *bool, name string, value bool, usage string) {
BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := CommandLine.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func (f *FlagSet) Bool(name string, value bool, usage string) *bool {
return f.BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolP(name, shorthand string, value bool, usage string) *bool {
p := new(bool)
f.BoolVarP(p, name, shorthand, value, usage)
return p
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func Bool(name string, value bool, usage string) *bool {
return BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func BoolP(name, shorthand string, value bool, usage string) *bool {
b := CommandLine.BoolP(name, shorthand, value, usage)
return b
}

View File

@ -0,0 +1,147 @@
package pflag
import (
"io"
"strconv"
"strings"
)
// -- boolSlice Value
type boolSliceValue struct {
value *[]bool
changed bool
}
func newBoolSliceValue(val []bool, p *[]bool) *boolSliceValue {
bsv := new(boolSliceValue)
bsv.value = p
*bsv.value = val
return bsv
}
// Set converts, and assigns, the comma-separated boolean argument string representation as the []bool value of this flag.
// If Set is called on a flag that already has a []bool assigned, the newly converted values will be appended.
func (s *boolSliceValue) Set(val string) error {
// remove all quote characters
rmQuote := strings.NewReplacer(`"`, "", `'`, "", "`", "")
// read flag arguments with CSV parser
boolStrSlice, err := readAsCSV(rmQuote.Replace(val))
if err != nil && err != io.EOF {
return err
}
// parse boolean values into slice
out := make([]bool, 0, len(boolStrSlice))
for _, boolStr := range boolStrSlice {
b, err := strconv.ParseBool(strings.TrimSpace(boolStr))
if err != nil {
return err
}
out = append(out, b)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
// Type returns a string that uniquely represents this flag's type.
func (s *boolSliceValue) Type() string {
return "boolSlice"
}
// String defines a "native" format for this boolean slice flag value.
func (s *boolSliceValue) String() string {
boolStrSlice := make([]string, len(*s.value))
for i, b := range *s.value {
boolStrSlice[i] = strconv.FormatBool(b)
}
out, _ := writeAsCSV(boolStrSlice)
return "[" + out + "]"
}
func boolSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []bool{}, nil
}
ss := strings.Split(val, ",")
out := make([]bool, len(ss))
for i, t := range ss {
var err error
out[i], err = strconv.ParseBool(t)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetBoolSlice returns the []bool value of a flag with the given name.
func (f *FlagSet) GetBoolSlice(name string) ([]bool, error) {
val, err := f.getFlagType(name, "boolSlice", boolSliceConv)
if err != nil {
return []bool{}, err
}
return val.([]bool), nil
}
// BoolSliceVar defines a boolSlice flag with specified name, default value, and usage string.
// The argument p points to a []bool variable in which to store the value of the flag.
func (f *FlagSet) BoolSliceVar(p *[]bool, name string, value []bool, usage string) {
f.VarP(newBoolSliceValue(value, p), name, "", usage)
}
// BoolSliceVarP is like BoolSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolSliceVarP(p *[]bool, name, shorthand string, value []bool, usage string) {
f.VarP(newBoolSliceValue(value, p), name, shorthand, usage)
}
// BoolSliceVar defines a []bool flag with specified name, default value, and usage string.
// The argument p points to a []bool variable in which to store the value of the flag.
func BoolSliceVar(p *[]bool, name string, value []bool, usage string) {
CommandLine.VarP(newBoolSliceValue(value, p), name, "", usage)
}
// BoolSliceVarP is like BoolSliceVar, but accepts a shorthand letter that can be used after a single dash.
func BoolSliceVarP(p *[]bool, name, shorthand string, value []bool, usage string) {
CommandLine.VarP(newBoolSliceValue(value, p), name, shorthand, usage)
}
// BoolSlice defines a []bool flag with specified name, default value, and usage string.
// The return value is the address of a []bool variable that stores the value of the flag.
func (f *FlagSet) BoolSlice(name string, value []bool, usage string) *[]bool {
p := []bool{}
f.BoolSliceVarP(&p, name, "", value, usage)
return &p
}
// BoolSliceP is like BoolSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolSliceP(name, shorthand string, value []bool, usage string) *[]bool {
p := []bool{}
f.BoolSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// BoolSlice defines a []bool flag with specified name, default value, and usage string.
// The return value is the address of a []bool variable that stores the value of the flag.
func BoolSlice(name string, value []bool, usage string) *[]bool {
return CommandLine.BoolSliceP(name, "", value, usage)
}
// BoolSliceP is like BoolSlice, but accepts a shorthand letter that can be used after a single dash.
func BoolSliceP(name, shorthand string, value []bool, usage string) *[]bool {
return CommandLine.BoolSliceP(name, shorthand, value, usage)
}

96
src/calanonsync/vendor/github.com/spf13/pflag/count.go generated vendored Normal file
View File

@ -0,0 +1,96 @@
package pflag
import "strconv"
// -- count Value
type countValue int
func newCountValue(val int, p *int) *countValue {
*p = val
return (*countValue)(p)
}
func (i *countValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
// -1 means that no specific value was passed, so increment
if v == -1 {
*i = countValue(*i + 1)
} else {
*i = countValue(v)
}
return err
}
func (i *countValue) Type() string {
return "count"
}
func (i *countValue) String() string { return strconv.Itoa(int(*i)) }
func countConv(sval string) (interface{}, error) {
i, err := strconv.Atoi(sval)
if err != nil {
return nil, err
}
return i, nil
}
// GetCount return the int value of a flag with the given name
func (f *FlagSet) GetCount(name string) (int, error) {
val, err := f.getFlagType(name, "count", countConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// CountVar defines a count flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func (f *FlagSet) CountVar(p *int, name string, usage string) {
f.CountVarP(p, name, "", usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func (f *FlagSet) CountVarP(p *int, name, shorthand string, usage string) {
flag := f.VarPF(newCountValue(0, p), name, shorthand, usage)
flag.NoOptDefVal = "-1"
}
// CountVar like CountVar only the flag is placed on the CommandLine instead of a given flag set
func CountVar(p *int, name string, usage string) {
CommandLine.CountVar(p, name, usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func CountVarP(p *int, name, shorthand string, usage string) {
CommandLine.CountVarP(p, name, shorthand, usage)
}
// Count defines a count flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func (f *FlagSet) Count(name string, usage string) *int {
p := new(int)
f.CountVarP(p, name, "", usage)
return p
}
// CountP is like Count only takes a shorthand for the flag name.
func (f *FlagSet) CountP(name, shorthand string, usage string) *int {
p := new(int)
f.CountVarP(p, name, shorthand, usage)
return p
}
// Count defines a count flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func Count(name string, usage string) *int {
return CommandLine.CountP(name, "", usage)
}
// CountP is like Count only takes a shorthand for the flag name.
func CountP(name, shorthand string, usage string) *int {
return CommandLine.CountP(name, shorthand, usage)
}

View File

@ -0,0 +1,86 @@
package pflag
import (
"time"
)
// -- time.Duration Value
type durationValue time.Duration
func newDurationValue(val time.Duration, p *time.Duration) *durationValue {
*p = val
return (*durationValue)(p)
}
func (d *durationValue) Set(s string) error {
v, err := time.ParseDuration(s)
*d = durationValue(v)
return err
}
func (d *durationValue) Type() string {
return "duration"
}
func (d *durationValue) String() string { return (*time.Duration)(d).String() }
func durationConv(sval string) (interface{}, error) {
return time.ParseDuration(sval)
}
// GetDuration return the duration value of a flag with the given name
func (f *FlagSet) GetDuration(name string) (time.Duration, error) {
val, err := f.getFlagType(name, "duration", durationConv)
if err != nil {
return 0, err
}
return val.(time.Duration), nil
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func (f *FlagSet) DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func (f *FlagSet) Duration(name string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, "", value, usage)
return p
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, shorthand, value, usage)
return p
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func Duration(name string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, "", value, usage)
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, shorthand, value, usage)
}

1128
src/calanonsync/vendor/github.com/spf13/pflag/flag.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- float32 Value
type float32Value float32
func newFloat32Value(val float32, p *float32) *float32Value {
*p = val
return (*float32Value)(p)
}
func (f *float32Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 32)
*f = float32Value(v)
return err
}
func (f *float32Value) Type() string {
return "float32"
}
func (f *float32Value) String() string { return strconv.FormatFloat(float64(*f), 'g', -1, 32) }
func float32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseFloat(sval, 32)
if err != nil {
return 0, err
}
return float32(v), nil
}
// GetFloat32 return the float32 value of a flag with the given name
func (f *FlagSet) GetFloat32(name string) (float32, error) {
val, err := f.getFlagType(name, "float32", float32Conv)
if err != nil {
return 0, err
}
return val.(float32), nil
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func (f *FlagSet) Float32Var(p *float32, name string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func Float32Var(p *float32, name string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func (f *FlagSet) Float32(name string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, "", value, usage)
return p
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32P(name, shorthand string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, shorthand, value, usage)
return p
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func Float32(name string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, "", value, usage)
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func Float32P(name, shorthand string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- float64 Value
type float64Value float64
func newFloat64Value(val float64, p *float64) *float64Value {
*p = val
return (*float64Value)(p)
}
func (f *float64Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 64)
*f = float64Value(v)
return err
}
func (f *float64Value) Type() string {
return "float64"
}
func (f *float64Value) String() string { return strconv.FormatFloat(float64(*f), 'g', -1, 64) }
func float64Conv(sval string) (interface{}, error) {
return strconv.ParseFloat(sval, 64)
}
// GetFloat64 return the float64 value of a flag with the given name
func (f *FlagSet) GetFloat64(name string) (float64, error) {
val, err := f.getFlagType(name, "float64", float64Conv)
if err != nil {
return 0, err
}
return val.(float64), nil
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func (f *FlagSet) Float64Var(p *float64, name string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func Float64Var(p *float64, name string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func (f *FlagSet) Float64(name string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, "", value, usage)
return p
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64P(name, shorthand string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, shorthand, value, usage)
return p
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func Float64(name string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, "", value, usage)
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func Float64P(name, shorthand string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,101 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pflag
import (
goflag "flag"
"reflect"
"strings"
)
// flagValueWrapper implements pflag.Value around a flag.Value. The main
// difference here is the addition of the Type method that returns a string
// name of the type. As this is generally unknown, we approximate that with
// reflection.
type flagValueWrapper struct {
inner goflag.Value
flagType string
}
// We are just copying the boolFlag interface out of goflag as that is what
// they use to decide if a flag should get "true" when no arg is given.
type goBoolFlag interface {
goflag.Value
IsBoolFlag() bool
}
func wrapFlagValue(v goflag.Value) Value {
// If the flag.Value happens to also be a pflag.Value, just use it directly.
if pv, ok := v.(Value); ok {
return pv
}
pv := &flagValueWrapper{
inner: v,
}
t := reflect.TypeOf(v)
if t.Kind() == reflect.Interface || t.Kind() == reflect.Ptr {
t = t.Elem()
}
pv.flagType = strings.TrimSuffix(t.Name(), "Value")
return pv
}
func (v *flagValueWrapper) String() string {
return v.inner.String()
}
func (v *flagValueWrapper) Set(s string) error {
return v.inner.Set(s)
}
func (v *flagValueWrapper) Type() string {
return v.flagType
}
// PFlagFromGoFlag will return a *pflag.Flag given a *flag.Flag
// If the *flag.Flag.Name was a single character (ex: `v`) it will be accessiblei
// with both `-v` and `--v` in flags. If the golang flag was more than a single
// character (ex: `verbose`) it will only be accessible via `--verbose`
func PFlagFromGoFlag(goflag *goflag.Flag) *Flag {
// Remember the default value as a string; it won't change.
flag := &Flag{
Name: goflag.Name,
Usage: goflag.Usage,
Value: wrapFlagValue(goflag.Value),
// Looks like golang flags don't set DefValue correctly :-(
//DefValue: goflag.DefValue,
DefValue: goflag.Value.String(),
}
// Ex: if the golang flag was -v, allow both -v and --v to work
if len(flag.Name) == 1 {
flag.Shorthand = flag.Name
}
if fv, ok := goflag.Value.(goBoolFlag); ok && fv.IsBoolFlag() {
flag.NoOptDefVal = "true"
}
return flag
}
// AddGoFlag will add the given *flag.Flag to the pflag.FlagSet
func (f *FlagSet) AddGoFlag(goflag *goflag.Flag) {
if f.Lookup(goflag.Name) != nil {
return
}
newflag := PFlagFromGoFlag(goflag)
f.AddFlag(newflag)
}
// AddGoFlagSet will add the given *flag.FlagSet to the pflag.FlagSet
func (f *FlagSet) AddGoFlagSet(newSet *goflag.FlagSet) {
if newSet == nil {
return
}
newSet.VisitAll(func(goflag *goflag.Flag) {
f.AddGoFlag(goflag)
})
}

84
src/calanonsync/vendor/github.com/spf13/pflag/int.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- int Value
type intValue int
func newIntValue(val int, p *int) *intValue {
*p = val
return (*intValue)(p)
}
func (i *intValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = intValue(v)
return err
}
func (i *intValue) Type() string {
return "int"
}
func (i *intValue) String() string { return strconv.Itoa(int(*i)) }
func intConv(sval string) (interface{}, error) {
return strconv.Atoi(sval)
}
// GetInt return the int value of a flag with the given name
func (f *FlagSet) GetInt(name string) (int, error) {
val, err := f.getFlagType(name, "int", intConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func (f *FlagSet) IntVar(p *int, name string, value int, usage string) {
f.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntVarP(p *int, name, shorthand string, value int, usage string) {
f.VarP(newIntValue(value, p), name, shorthand, usage)
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func IntVar(p *int, name string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func IntVarP(p *int, name, shorthand string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, shorthand, usage)
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func (f *FlagSet) Int(name string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, "", value, usage)
return p
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntP(name, shorthand string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, shorthand, value, usage)
return p
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func Int(name string, value int, usage string) *int {
return CommandLine.IntP(name, "", value, usage)
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func IntP(name, shorthand string, value int, usage string) *int {
return CommandLine.IntP(name, shorthand, value, usage)
}

88
src/calanonsync/vendor/github.com/spf13/pflag/int32.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- int32 Value
type int32Value int32
func newInt32Value(val int32, p *int32) *int32Value {
*p = val
return (*int32Value)(p)
}
func (i *int32Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 32)
*i = int32Value(v)
return err
}
func (i *int32Value) Type() string {
return "int32"
}
func (i *int32Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 32)
if err != nil {
return 0, err
}
return int32(v), nil
}
// GetInt32 return the int32 value of a flag with the given name
func (f *FlagSet) GetInt32(name string) (int32, error) {
val, err := f.getFlagType(name, "int32", int32Conv)
if err != nil {
return 0, err
}
return val.(int32), nil
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func (f *FlagSet) Int32Var(p *int32, name string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func Int32Var(p *int32, name string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func (f *FlagSet) Int32(name string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, "", value, usage)
return p
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32P(name, shorthand string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, shorthand, value, usage)
return p
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func Int32(name string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, "", value, usage)
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func Int32P(name, shorthand string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, shorthand, value, usage)
}

84
src/calanonsync/vendor/github.com/spf13/pflag/int64.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- int64 Value
type int64Value int64
func newInt64Value(val int64, p *int64) *int64Value {
*p = val
return (*int64Value)(p)
}
func (i *int64Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = int64Value(v)
return err
}
func (i *int64Value) Type() string {
return "int64"
}
func (i *int64Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int64Conv(sval string) (interface{}, error) {
return strconv.ParseInt(sval, 0, 64)
}
// GetInt64 return the int64 value of a flag with the given name
func (f *FlagSet) GetInt64(name string) (int64, error) {
val, err := f.getFlagType(name, "int64", int64Conv)
if err != nil {
return 0, err
}
return val.(int64), nil
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func (f *FlagSet) Int64Var(p *int64, name string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func Int64Var(p *int64, name string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func (f *FlagSet) Int64(name string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, "", value, usage)
return p
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64P(name, shorthand string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, shorthand, value, usage)
return p
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func Int64(name string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, "", value, usage)
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func Int64P(name, shorthand string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, shorthand, value, usage)
}

88
src/calanonsync/vendor/github.com/spf13/pflag/int8.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- int8 Value
type int8Value int8
func newInt8Value(val int8, p *int8) *int8Value {
*p = val
return (*int8Value)(p)
}
func (i *int8Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 8)
*i = int8Value(v)
return err
}
func (i *int8Value) Type() string {
return "int8"
}
func (i *int8Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 8)
if err != nil {
return 0, err
}
return int8(v), nil
}
// GetInt8 return the int8 value of a flag with the given name
func (f *FlagSet) GetInt8(name string) (int8, error) {
val, err := f.getFlagType(name, "int8", int8Conv)
if err != nil {
return 0, err
}
return val.(int8), nil
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func (f *FlagSet) Int8Var(p *int8, name string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func Int8Var(p *int8, name string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func (f *FlagSet) Int8(name string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, "", value, usage)
return p
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8P(name, shorthand string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, shorthand, value, usage)
return p
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func Int8(name string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, "", value, usage)
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func Int8P(name, shorthand string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,128 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- intSlice Value
type intSliceValue struct {
value *[]int
changed bool
}
func newIntSliceValue(val []int, p *[]int) *intSliceValue {
isv := new(intSliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *intSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *intSliceValue) Type() string {
return "intSlice"
}
func (s *intSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func intSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []int{}, nil
}
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetIntSlice return the []int value of a flag with the given name
func (f *FlagSet) GetIntSlice(name string) ([]int, error) {
val, err := f.getFlagType(name, "intSlice", intSliceConv)
if err != nil {
return []int{}, err
}
return val.([]int), nil
}
// IntSliceVar defines a intSlice flag with specified name, default value, and usage string.
// The argument p points to a []int variable in which to store the value of the flag.
func (f *FlagSet) IntSliceVar(p *[]int, name string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSliceVar defines a int[] flag with specified name, default value, and usage string.
// The argument p points to a int[] variable in which to store the value of the flag.
func IntSliceVar(p *[]int, name string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func (f *FlagSet) IntSlice(name string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, "", value, usage)
return &p
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceP(name, shorthand string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func IntSlice(name string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, "", value, usage)
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func IntSliceP(name, shorthand string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, shorthand, value, usage)
}

94
src/calanonsync/vendor/github.com/spf13/pflag/ip.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
package pflag
import (
"fmt"
"net"
"strings"
)
// -- net.IP value
type ipValue net.IP
func newIPValue(val net.IP, p *net.IP) *ipValue {
*p = val
return (*ipValue)(p)
}
func (i *ipValue) String() string { return net.IP(*i).String() }
func (i *ipValue) Set(s string) error {
ip := net.ParseIP(strings.TrimSpace(s))
if ip == nil {
return fmt.Errorf("failed to parse IP: %q", s)
}
*i = ipValue(ip)
return nil
}
func (i *ipValue) Type() string {
return "ip"
}
func ipConv(sval string) (interface{}, error) {
ip := net.ParseIP(sval)
if ip != nil {
return ip, nil
}
return nil, fmt.Errorf("invalid string being converted to IP address: %s", sval)
}
// GetIP return the net.IP value of a flag with the given name
func (f *FlagSet) GetIP(name string) (net.IP, error) {
val, err := f.getFlagType(name, "ip", ipConv)
if err != nil {
return nil, err
}
return val.(net.IP), nil
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPVar(p *net.IP, name string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func IPVar(p *net.IP, name string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func (f *FlagSet) IP(name string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, "", value, usage)
return p
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPP(name, shorthand string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, shorthand, value, usage)
return p
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func IP(name string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, "", value, usage)
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPP(name, shorthand string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, shorthand, value, usage)
}

View File

@ -0,0 +1,148 @@
package pflag
import (
"fmt"
"io"
"net"
"strings"
)
// -- ipSlice Value
type ipSliceValue struct {
value *[]net.IP
changed bool
}
func newIPSliceValue(val []net.IP, p *[]net.IP) *ipSliceValue {
ipsv := new(ipSliceValue)
ipsv.value = p
*ipsv.value = val
return ipsv
}
// Set converts, and assigns, the comma-separated IP argument string representation as the []net.IP value of this flag.
// If Set is called on a flag that already has a []net.IP assigned, the newly converted values will be appended.
func (s *ipSliceValue) Set(val string) error {
// remove all quote characters
rmQuote := strings.NewReplacer(`"`, "", `'`, "", "`", "")
// read flag arguments with CSV parser
ipStrSlice, err := readAsCSV(rmQuote.Replace(val))
if err != nil && err != io.EOF {
return err
}
// parse ip values into slice
out := make([]net.IP, 0, len(ipStrSlice))
for _, ipStr := range ipStrSlice {
ip := net.ParseIP(strings.TrimSpace(ipStr))
if ip == nil {
return fmt.Errorf("invalid string being converted to IP address: %s", ipStr)
}
out = append(out, ip)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
// Type returns a string that uniquely represents this flag's type.
func (s *ipSliceValue) Type() string {
return "ipSlice"
}
// String defines a "native" format for this net.IP slice flag value.
func (s *ipSliceValue) String() string {
ipStrSlice := make([]string, len(*s.value))
for i, ip := range *s.value {
ipStrSlice[i] = ip.String()
}
out, _ := writeAsCSV(ipStrSlice)
return "[" + out + "]"
}
func ipSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Emtpy string would cause a slice with one (empty) entry
if len(val) == 0 {
return []net.IP{}, nil
}
ss := strings.Split(val, ",")
out := make([]net.IP, len(ss))
for i, sval := range ss {
ip := net.ParseIP(strings.TrimSpace(sval))
if ip == nil {
return nil, fmt.Errorf("invalid string being converted to IP address: %s", sval)
}
out[i] = ip
}
return out, nil
}
// GetIPSlice returns the []net.IP value of a flag with the given name
func (f *FlagSet) GetIPSlice(name string) ([]net.IP, error) {
val, err := f.getFlagType(name, "ipSlice", ipSliceConv)
if err != nil {
return []net.IP{}, err
}
return val.([]net.IP), nil
}
// IPSliceVar defines a ipSlice flag with specified name, default value, and usage string.
// The argument p points to a []net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPSliceVar(p *[]net.IP, name string, value []net.IP, usage string) {
f.VarP(newIPSliceValue(value, p), name, "", usage)
}
// IPSliceVarP is like IPSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPSliceVarP(p *[]net.IP, name, shorthand string, value []net.IP, usage string) {
f.VarP(newIPSliceValue(value, p), name, shorthand, usage)
}
// IPSliceVar defines a []net.IP flag with specified name, default value, and usage string.
// The argument p points to a []net.IP variable in which to store the value of the flag.
func IPSliceVar(p *[]net.IP, name string, value []net.IP, usage string) {
CommandLine.VarP(newIPSliceValue(value, p), name, "", usage)
}
// IPSliceVarP is like IPSliceVar, but accepts a shorthand letter that can be used after a single dash.
func IPSliceVarP(p *[]net.IP, name, shorthand string, value []net.IP, usage string) {
CommandLine.VarP(newIPSliceValue(value, p), name, shorthand, usage)
}
// IPSlice defines a []net.IP flag with specified name, default value, and usage string.
// The return value is the address of a []net.IP variable that stores the value of that flag.
func (f *FlagSet) IPSlice(name string, value []net.IP, usage string) *[]net.IP {
p := []net.IP{}
f.IPSliceVarP(&p, name, "", value, usage)
return &p
}
// IPSliceP is like IPSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPSliceP(name, shorthand string, value []net.IP, usage string) *[]net.IP {
p := []net.IP{}
f.IPSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// IPSlice defines a []net.IP flag with specified name, default value, and usage string.
// The return value is the address of a []net.IP variable that stores the value of the flag.
func IPSlice(name string, value []net.IP, usage string) *[]net.IP {
return CommandLine.IPSliceP(name, "", value, usage)
}
// IPSliceP is like IPSlice, but accepts a shorthand letter that can be used after a single dash.
func IPSliceP(name, shorthand string, value []net.IP, usage string) *[]net.IP {
return CommandLine.IPSliceP(name, shorthand, value, usage)
}

122
src/calanonsync/vendor/github.com/spf13/pflag/ipmask.go generated vendored Normal file
View File

@ -0,0 +1,122 @@
package pflag
import (
"fmt"
"net"
"strconv"
)
// -- net.IPMask value
type ipMaskValue net.IPMask
func newIPMaskValue(val net.IPMask, p *net.IPMask) *ipMaskValue {
*p = val
return (*ipMaskValue)(p)
}
func (i *ipMaskValue) String() string { return net.IPMask(*i).String() }
func (i *ipMaskValue) Set(s string) error {
ip := ParseIPv4Mask(s)
if ip == nil {
return fmt.Errorf("failed to parse IP mask: %q", s)
}
*i = ipMaskValue(ip)
return nil
}
func (i *ipMaskValue) Type() string {
return "ipMask"
}
// ParseIPv4Mask written in IP form (e.g. 255.255.255.0).
// This function should really belong to the net package.
func ParseIPv4Mask(s string) net.IPMask {
mask := net.ParseIP(s)
if mask == nil {
if len(s) != 8 {
return nil
}
// net.IPMask.String() actually outputs things like ffffff00
// so write a horrible parser for that as well :-(
m := []int{}
for i := 0; i < 4; i++ {
b := "0x" + s[2*i:2*i+2]
d, err := strconv.ParseInt(b, 0, 0)
if err != nil {
return nil
}
m = append(m, int(d))
}
s := fmt.Sprintf("%d.%d.%d.%d", m[0], m[1], m[2], m[3])
mask = net.ParseIP(s)
if mask == nil {
return nil
}
}
return net.IPv4Mask(mask[12], mask[13], mask[14], mask[15])
}
func parseIPv4Mask(sval string) (interface{}, error) {
mask := ParseIPv4Mask(sval)
if mask == nil {
return nil, fmt.Errorf("unable to parse %s as net.IPMask", sval)
}
return mask, nil
}
// GetIPv4Mask return the net.IPv4Mask value of a flag with the given name
func (f *FlagSet) GetIPv4Mask(name string) (net.IPMask, error) {
val, err := f.getFlagType(name, "ipMask", parseIPv4Mask)
if err != nil {
return nil, err
}
return val.(net.IPMask), nil
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func (f *FlagSet) IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func (f *FlagSet) IPMask(name string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, "", value, usage)
return p
}
// IPMaskP is like IPMask, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, shorthand, value, usage)
return p
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func IPMask(name string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, "", value, usage)
}
// IPMaskP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, shorthand, value, usage)
}

98
src/calanonsync/vendor/github.com/spf13/pflag/ipnet.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
package pflag
import (
"fmt"
"net"
"strings"
)
// IPNet adapts net.IPNet for use as a flag.
type ipNetValue net.IPNet
func (ipnet ipNetValue) String() string {
n := net.IPNet(ipnet)
return n.String()
}
func (ipnet *ipNetValue) Set(value string) error {
_, n, err := net.ParseCIDR(strings.TrimSpace(value))
if err != nil {
return err
}
*ipnet = ipNetValue(*n)
return nil
}
func (*ipNetValue) Type() string {
return "ipNet"
}
func newIPNetValue(val net.IPNet, p *net.IPNet) *ipNetValue {
*p = val
return (*ipNetValue)(p)
}
func ipNetConv(sval string) (interface{}, error) {
_, n, err := net.ParseCIDR(strings.TrimSpace(sval))
if err == nil {
return *n, nil
}
return nil, fmt.Errorf("invalid string being converted to IPNet: %s", sval)
}
// GetIPNet return the net.IPNet value of a flag with the given name
func (f *FlagSet) GetIPNet(name string) (net.IPNet, error) {
val, err := f.getFlagType(name, "ipNet", ipNetConv)
if err != nil {
return net.IPNet{}, err
}
return val.(net.IPNet), nil
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func (f *FlagSet) IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func (f *FlagSet) IPNet(name string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, "", value, usage)
return p
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, shorthand, value, usage)
return p
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func IPNet(name string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, "", value, usage)
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, shorthand, value, usage)
}

View File

@ -0,0 +1,80 @@
package pflag
// -- string Value
type stringValue string
func newStringValue(val string, p *string) *stringValue {
*p = val
return (*stringValue)(p)
}
func (s *stringValue) Set(val string) error {
*s = stringValue(val)
return nil
}
func (s *stringValue) Type() string {
return "string"
}
func (s *stringValue) String() string { return string(*s) }
func stringConv(sval string) (interface{}, error) {
return sval, nil
}
// GetString return the string value of a flag with the given name
func (f *FlagSet) GetString(name string) (string, error) {
val, err := f.getFlagType(name, "string", stringConv)
if err != nil {
return "", err
}
return val.(string), nil
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func (f *FlagSet) StringVar(p *string, name string, value string, usage string) {
f.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringVarP(p *string, name, shorthand string, value string, usage string) {
f.VarP(newStringValue(value, p), name, shorthand, usage)
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func StringVar(p *string, name string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func StringVarP(p *string, name, shorthand string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, shorthand, usage)
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func (f *FlagSet) String(name string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, "", value, usage)
return p
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringP(name, shorthand string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, shorthand, value, usage)
return p
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func String(name string, value string, usage string) *string {
return CommandLine.StringP(name, "", value, usage)
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func StringP(name, shorthand string, value string, usage string) *string {
return CommandLine.StringP(name, shorthand, value, usage)
}

View File

@ -0,0 +1,103 @@
package pflag
// -- stringArray Value
type stringArrayValue struct {
value *[]string
changed bool
}
func newStringArrayValue(val []string, p *[]string) *stringArrayValue {
ssv := new(stringArrayValue)
ssv.value = p
*ssv.value = val
return ssv
}
func (s *stringArrayValue) Set(val string) error {
if !s.changed {
*s.value = []string{val}
s.changed = true
} else {
*s.value = append(*s.value, val)
}
return nil
}
func (s *stringArrayValue) Type() string {
return "stringArray"
}
func (s *stringArrayValue) String() string {
str, _ := writeAsCSV(*s.value)
return "[" + str + "]"
}
func stringArrayConv(sval string) (interface{}, error) {
sval = sval[1 : len(sval)-1]
// An empty string would cause a array with one (empty) string
if len(sval) == 0 {
return []string{}, nil
}
return readAsCSV(sval)
}
// GetStringArray return the []string value of a flag with the given name
func (f *FlagSet) GetStringArray(name string) ([]string, error) {
val, err := f.getFlagType(name, "stringArray", stringArrayConv)
if err != nil {
return []string{}, err
}
return val.([]string), nil
}
// StringArrayVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the values of the multiple flags.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringArrayVar(p *[]string, name string, value []string, usage string) {
f.VarP(newStringArrayValue(value, p), name, "", usage)
}
// StringArrayVarP is like StringArrayVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringArrayVarP(p *[]string, name, shorthand string, value []string, usage string) {
f.VarP(newStringArrayValue(value, p), name, shorthand, usage)
}
// StringArrayVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
// The value of each argument will not try to be separated by comma
func StringArrayVar(p *[]string, name string, value []string, usage string) {
CommandLine.VarP(newStringArrayValue(value, p), name, "", usage)
}
// StringArrayVarP is like StringArrayVar, but accepts a shorthand letter that can be used after a single dash.
func StringArrayVarP(p *[]string, name, shorthand string, value []string, usage string) {
CommandLine.VarP(newStringArrayValue(value, p), name, shorthand, usage)
}
// StringArray defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringArray(name string, value []string, usage string) *[]string {
p := []string{}
f.StringArrayVarP(&p, name, "", value, usage)
return &p
}
// StringArrayP is like StringArray, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringArrayP(name, shorthand string, value []string, usage string) *[]string {
p := []string{}
f.StringArrayVarP(&p, name, shorthand, value, usage)
return &p
}
// StringArray defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func StringArray(name string, value []string, usage string) *[]string {
return CommandLine.StringArrayP(name, "", value, usage)
}
// StringArrayP is like StringArray, but accepts a shorthand letter that can be used after a single dash.
func StringArrayP(name, shorthand string, value []string, usage string) *[]string {
return CommandLine.StringArrayP(name, shorthand, value, usage)
}

View File

@ -0,0 +1,129 @@
package pflag
import (
"bytes"
"encoding/csv"
"strings"
)
// -- stringSlice Value
type stringSliceValue struct {
value *[]string
changed bool
}
func newStringSliceValue(val []string, p *[]string) *stringSliceValue {
ssv := new(stringSliceValue)
ssv.value = p
*ssv.value = val
return ssv
}
func readAsCSV(val string) ([]string, error) {
if val == "" {
return []string{}, nil
}
stringReader := strings.NewReader(val)
csvReader := csv.NewReader(stringReader)
return csvReader.Read()
}
func writeAsCSV(vals []string) (string, error) {
b := &bytes.Buffer{}
w := csv.NewWriter(b)
err := w.Write(vals)
if err != nil {
return "", err
}
w.Flush()
return strings.TrimSuffix(b.String(), "\n"), nil
}
func (s *stringSliceValue) Set(val string) error {
v, err := readAsCSV(val)
if err != nil {
return err
}
if !s.changed {
*s.value = v
} else {
*s.value = append(*s.value, v...)
}
s.changed = true
return nil
}
func (s *stringSliceValue) Type() string {
return "stringSlice"
}
func (s *stringSliceValue) String() string {
str, _ := writeAsCSV(*s.value)
return "[" + str + "]"
}
func stringSliceConv(sval string) (interface{}, error) {
sval = sval[1 : len(sval)-1]
// An empty string would cause a slice with one (empty) string
if len(sval) == 0 {
return []string{}, nil
}
return readAsCSV(sval)
}
// GetStringSlice return the []string value of a flag with the given name
func (f *FlagSet) GetStringSlice(name string) ([]string, error) {
val, err := f.getFlagType(name, "stringSlice", stringSliceConv)
if err != nil {
return []string{}, err
}
return val.([]string), nil
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
func (f *FlagSet) StringSliceVar(p *[]string, name string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
func StringSliceVar(p *[]string, name string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
func (f *FlagSet) StringSlice(name string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, "", value, usage)
return &p
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceP(name, shorthand string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
func StringSlice(name string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, "", value, usage)
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func StringSliceP(name, shorthand string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, shorthand, value, usage)
}

88
src/calanonsync/vendor/github.com/spf13/pflag/uint.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint Value
type uintValue uint
func newUintValue(val uint, p *uint) *uintValue {
*p = val
return (*uintValue)(p)
}
func (i *uintValue) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uintValue(v)
return err
}
func (i *uintValue) Type() string {
return "uint"
}
func (i *uintValue) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uintConv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 0)
if err != nil {
return 0, err
}
return uint(v), nil
}
// GetUint return the uint value of a flag with the given name
func (f *FlagSet) GetUint(name string) (uint, error) {
val, err := f.getFlagType(name, "uint", uintConv)
if err != nil {
return 0, err
}
return val.(uint), nil
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) UintVar(p *uint, name string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintVarP(p *uint, name, shorthand string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, shorthand, usage)
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func UintVar(p *uint, name string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func UintVarP(p *uint, name, shorthand string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, shorthand, usage)
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint(name string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, "", value, usage)
return p
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintP(name, shorthand string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, shorthand, value, usage)
return p
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint(name string, value uint, usage string) *uint {
return CommandLine.UintP(name, "", value, usage)
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func UintP(name, shorthand string, value uint, usage string) *uint {
return CommandLine.UintP(name, shorthand, value, usage)
}

View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint16 value
type uint16Value uint16
func newUint16Value(val uint16, p *uint16) *uint16Value {
*p = val
return (*uint16Value)(p)
}
func (i *uint16Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 16)
*i = uint16Value(v)
return err
}
func (i *uint16Value) Type() string {
return "uint16"
}
func (i *uint16Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint16Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 16)
if err != nil {
return 0, err
}
return uint16(v), nil
}
// GetUint16 return the uint16 value of a flag with the given name
func (f *FlagSet) GetUint16(name string) (uint16, error) {
val, err := f.getFlagType(name, "uint16", uint16Conv)
if err != nil {
return 0, err
}
return val.(uint16), nil
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) Uint16Var(p *uint16, name string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func Uint16Var(p *uint16, name string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint16(name string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, "", value, usage)
return p
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, shorthand, value, usage)
return p
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint16(name string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, "", value, usage)
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint32 value
type uint32Value uint32
func newUint32Value(val uint32, p *uint32) *uint32Value {
*p = val
return (*uint32Value)(p)
}
func (i *uint32Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 32)
*i = uint32Value(v)
return err
}
func (i *uint32Value) Type() string {
return "uint32"
}
func (i *uint32Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 32)
if err != nil {
return 0, err
}
return uint32(v), nil
}
// GetUint32 return the uint32 value of a flag with the given name
func (f *FlagSet) GetUint32(name string) (uint32, error) {
val, err := f.getFlagType(name, "uint32", uint32Conv)
if err != nil {
return 0, err
}
return val.(uint32), nil
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func (f *FlagSet) Uint32Var(p *uint32, name string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func Uint32Var(p *uint32, name string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func (f *FlagSet) Uint32(name string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, "", value, usage)
return p
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, shorthand, value, usage)
return p
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func Uint32(name string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, "", value, usage)
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint64 Value
type uint64Value uint64
func newUint64Value(val uint64, p *uint64) *uint64Value {
*p = val
return (*uint64Value)(p)
}
func (i *uint64Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uint64Value(v)
return err
}
func (i *uint64Value) Type() string {
return "uint64"
}
func (i *uint64Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint64Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 64)
if err != nil {
return 0, err
}
return uint64(v), nil
}
// GetUint64 return the uint64 value of a flag with the given name
func (f *FlagSet) GetUint64(name string) (uint64, error) {
val, err := f.getFlagType(name, "uint64", uint64Conv)
if err != nil {
return 0, err
}
return val.(uint64), nil
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func (f *FlagSet) Uint64Var(p *uint64, name string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func Uint64Var(p *uint64, name string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func (f *FlagSet) Uint64(name string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, "", value, usage)
return p
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, shorthand, value, usage)
return p
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func Uint64(name string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, "", value, usage)
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, shorthand, value, usage)
}

88
src/calanonsync/vendor/github.com/spf13/pflag/uint8.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint8 Value
type uint8Value uint8
func newUint8Value(val uint8, p *uint8) *uint8Value {
*p = val
return (*uint8Value)(p)
}
func (i *uint8Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 8)
*i = uint8Value(v)
return err
}
func (i *uint8Value) Type() string {
return "uint8"
}
func (i *uint8Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 8)
if err != nil {
return 0, err
}
return uint8(v), nil
}
// GetUint8 return the uint8 value of a flag with the given name
func (f *FlagSet) GetUint8(name string) (uint8, error) {
val, err := f.getFlagType(name, "uint8", uint8Conv)
if err != nil {
return 0, err
}
return val.(uint8), nil
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func (f *FlagSet) Uint8Var(p *uint8, name string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func Uint8Var(p *uint8, name string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func (f *FlagSet) Uint8(name string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, "", value, usage)
return p
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, shorthand, value, usage)
return p
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func Uint8(name string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, "", value, usage)
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, shorthand, value, usage)
}

View File

@ -0,0 +1,126 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- uintSlice Value
type uintSliceValue struct {
value *[]uint
changed bool
}
func newUintSliceValue(val []uint, p *[]uint) *uintSliceValue {
uisv := new(uintSliceValue)
uisv.value = p
*uisv.value = val
return uisv
}
func (s *uintSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]uint, len(ss))
for i, d := range ss {
u, err := strconv.ParseUint(d, 10, 0)
if err != nil {
return err
}
out[i] = uint(u)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *uintSliceValue) Type() string {
return "uintSlice"
}
func (s *uintSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func uintSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []uint{}, nil
}
ss := strings.Split(val, ",")
out := make([]uint, len(ss))
for i, d := range ss {
u, err := strconv.ParseUint(d, 10, 0)
if err != nil {
return nil, err
}
out[i] = uint(u)
}
return out, nil
}
// GetUintSlice returns the []uint value of a flag with the given name.
func (f *FlagSet) GetUintSlice(name string) ([]uint, error) {
val, err := f.getFlagType(name, "uintSlice", uintSliceConv)
if err != nil {
return []uint{}, err
}
return val.([]uint), nil
}
// UintSliceVar defines a uintSlice flag with specified name, default value, and usage string.
// The argument p points to a []uint variable in which to store the value of the flag.
func (f *FlagSet) UintSliceVar(p *[]uint, name string, value []uint, usage string) {
f.VarP(newUintSliceValue(value, p), name, "", usage)
}
// UintSliceVarP is like UintSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintSliceVarP(p *[]uint, name, shorthand string, value []uint, usage string) {
f.VarP(newUintSliceValue(value, p), name, shorthand, usage)
}
// UintSliceVar defines a uint[] flag with specified name, default value, and usage string.
// The argument p points to a uint[] variable in which to store the value of the flag.
func UintSliceVar(p *[]uint, name string, value []uint, usage string) {
CommandLine.VarP(newUintSliceValue(value, p), name, "", usage)
}
// UintSliceVarP is like the UintSliceVar, but accepts a shorthand letter that can be used after a single dash.
func UintSliceVarP(p *[]uint, name, shorthand string, value []uint, usage string) {
CommandLine.VarP(newUintSliceValue(value, p), name, shorthand, usage)
}
// UintSlice defines a []uint flag with specified name, default value, and usage string.
// The return value is the address of a []uint variable that stores the value of the flag.
func (f *FlagSet) UintSlice(name string, value []uint, usage string) *[]uint {
p := []uint{}
f.UintSliceVarP(&p, name, "", value, usage)
return &p
}
// UintSliceP is like UintSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintSliceP(name, shorthand string, value []uint, usage string) *[]uint {
p := []uint{}
f.UintSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// UintSlice defines a []uint flag with specified name, default value, and usage string.
// The return value is the address of a []uint variable that stores the value of the flag.
func UintSlice(name string, value []uint, usage string) *[]uint {
return CommandLine.UintSliceP(name, "", value, usage)
}
// UintSliceP is like UintSlice, but accepts a shorthand letter that can be used after a single dash.
func UintSliceP(name, shorthand string, value []uint, usage string) *[]uint {
return CommandLine.UintSliceP(name, shorthand, value, usage)
}